Lipid Oxidation Induced by RF Waves and Mediated by Ferritin Iron Causes Activation of Ferritin-Tagged Ion Channels

被引:28
作者
Hernandez-Morales, Miriam [1 ,2 ]
Shang, Trisha [3 ]
Chen, Jingjia [1 ]
Han, Victor [1 ]
Liu, Chunlei [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
CAPSAICIN-RECEPTOR; VANILLOID RECEPTOR; REMOTE REGULATION; CATION CHANNEL; PEROXIDATION; NEURONS; GLUCOSE;
D O I
10.1016/j.celrep.2020.02.070
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
One approach to magnetogenetics uses radiofrequency (RF) waves to activate transient receptor potential channels (TRPV1 and TRPV4) that are coupled to cellular ferritins. The mechanisms underlying this effect are unclear and controversial. Theoretical calculations suggest that the heat produced by RF fields is likely orders of magnitude weaker than needed for channel activation. Using the FeRIC (Ferritin iron Redistribution to Ion Channels) system, we have uncovered a mechanism of activation of ferritin-tagged channels via a biochemical pathway initiated by RF disturbance of ferritin and mediated by ferritin-associated iron. We show that, in cells expressing TRPVFeRIC channels, RF increases the levels of the labile iron pool in a ferritin-dependent manner. Free iron participates in chemical reactions, producing reactive oxygen species and oxidized lipids that ultimately activate the TRPVFeRIC channels. This biochemical pathway predicts a similar RF-induced activation of other lipid-sensitive TRP channels and may guide future magnetogenetic designs.
引用
收藏
页码:3250 / +
页数:18
相关论文
共 45 条
[1]   Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress [J].
Andersson, David A. ;
Gentry, Clive ;
Moss, Sian ;
Bevan, Stuart .
JOURNAL OF NEUROSCIENCE, 2008, 28 (10) :2485-2494
[2]   Ferritin, Cellular Iron Storage and Regulation [J].
Arosio, Paolo ;
Elia, Leonardo ;
Poli, Maura .
IUBMB LIFE, 2017, 69 (06) :414-422
[3]   Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal [J].
Ayala, Antonio ;
Munoz, Mario F. ;
Argueelles, Sandro .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2014, 2014
[4]   Possible magneto-mechanical and magneto-thermal mechanisms of ion channel activation in magnetogenetics [J].
Barbic, Mladen .
ELIFE, 2019, 8
[5]   Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions [J].
Catala, Angel .
CHEMISTRY AND PHYSICS OF LIPIDS, 2009, 157 (01) :1-11
[6]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[7]   A capsaicin-receptor homologue with a high threshold for noxious heat [J].
Caterina, MJ ;
Rosen, TA ;
Tominaga, M ;
Brake, AJ ;
Julius, D .
NATURE, 1999, 398 (6726) :436-441
[8]   Radio Frequency Magnetic Field Effects on Molecular Dynamics and Iron Uptake in Cage Proteins [J].
Cespedes, Oscar ;
Inomoto, Osamu ;
Kai, Shoichi ;
Nibu, Yoshinori ;
Yamaguchi, Toshio ;
Sakamoto, Nobuyoshi ;
Akune, Tadahiro ;
Inoue, Masayoshi ;
Kiss, Takanobu ;
Ueno, Shoogo .
BIOELECTROMAGNETICS, 2010, 31 (04) :311-317
[9]   Effects of Radio Frequency Magnetic Fields on Iron Release From Cage Proteins [J].
Cespedes, Oscar ;
Ueno, Shoogo .
BIOELECTROMAGNETICS, 2009, 30 (05) :336-342
[10]   Wireless magnetothermal deep brain stimulation [J].
Chen, Ritchie ;
Romero, Gabriela ;
Christiansen, Michael G. ;
Mohr, Alan ;
Anikeeva, Polina .
SCIENCE, 2015, 347 (6229) :1477-1480