Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design

被引:39
作者
Rajabi, Kamran [1 ]
Wang, Jiaxing [2 ]
Jin, Jie [1 ]
Xing, Yuchen [1 ]
Wang, Lai [1 ]
Han, Yanjun [1 ]
Sun, Changzheng [1 ]
Hao, Zhibiao [1 ]
Luo, Yi [1 ]
Qian, Keyuan [1 ]
Chen, Chien-Ju [3 ]
Wu, Meng-Chyi [3 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, 253 Cory Hall, Berkeley, CA 94720 USA
[3] Taiwan Natl Tsing Hua Univ, Dept Elect Engn, 101,Sect 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
来源
OPTICS EXPRESS | 2018年 / 26卷 / 19期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SPEED; BARRIER; LAYERS; LEDS;
D O I
10.1364/OE.26.024985
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The GaN-based light emitting diodes (LEDs) have a great potential for visible light communication (VLC) due to their ubiquitous application in general lighting, but the modulation bandwidth of conventional c-plane LEDs is limited by carrier recombination rate in InGaN quantum wells (QWs) due to the polarization-field-induced quantum confined Stark effect (QCSE). Furthermore, the high modulation bandwidth on c-plane sapphire substrates can only be achieved at high current densities. Here, blue LEDs with ultra-thin InGaN QWs (1nm) and GaN barriers (3nm) are grown on c-plane sapphire substrate to suppress QCSE and extend the cut-off frequency from 214 MHz for conventional LEDs to 536 MHz at a current density of 2.5 kA/cm(2), which is comparable to devices grown on semi-polar substrates. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:24985 / 24991
页数:7
相关论文
共 30 条
[1]  
[Anonymous], OPT FIB COMM C EXP O
[2]   A band-structure model of strained quantum-well wurtzite semiconductors [J].
Chuang, SL ;
Chang, CS .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (03) :252-263
[3]   Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis [J].
David, Aurelien ;
Grundmann, Michael J. .
APPLIED PHYSICS LETTERS, 2010, 96 (10)
[4]   GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth [J].
David, Aurelien ;
Moran, Brendan ;
McGroddy, Kelly ;
Matioli, Elison ;
Hu, Evelyn L. ;
DenBaars, Steven P. ;
Nakamura, Shuji ;
Weisbuchb, Claude .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[5]  
Dimitrov S., 2015, PRINCIPLES LED LIGHT, DOI DOI 10.1017/CBO9781107278929
[6]   GHz bandwidth semipolar (11(2)over-bar2) InGaN/GaN light-emitting diodes [J].
Dinh, Duc V. ;
Quan, Zhiheng ;
Roycroft, Brendan ;
Parbrook, Peter J. ;
Corbett, Brian .
OPTICS LETTERS, 2016, 41 (24) :5752-5755
[7]   High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications [J].
Ferreira, Ricardo X. G. ;
Xie, Enyuan ;
McKendry, Jonathan J. D. ;
Rajbhandari, Sujan ;
Chun, Hyunchae ;
Faulkner, Grahame ;
Watson, Scott ;
Kelly, Anthony E. ;
Gu, Erdan ;
Penty, Richard V. ;
White, Ian H. ;
O'Brien, Dominic C. ;
Dawson, Martin D. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (19) :2023-2026
[8]   DESIGN PARAMETERS OF FREQUENCY-RESPONSE OF GAAS-(GA,AL)AS DOUBLE HETEROSTRUCTURE LEDS FOR OPTICAL COMMUNICATIONS [J].
IKEDA, K ;
HORIUCHI, S ;
TANAKA, T ;
SUSAKI, W .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1977, 24 (07) :1001-1005
[9]  
Kane M. H., 2016, 15 INT C SOL STAT LI
[10]   Structural and optical emission characteristics of InGaN thin layers and the implications for growing high-quality quantum wells by MOCVD [J].
Kobayashi, JT ;
Kobayashi, NP ;
Zhang, X ;
Dapkus, PD ;
Rich, DH .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :252-257