Ulam stability problem for quadratic mappings of Euler-Lagrange

被引:12
作者
Jun, KW [1 ]
Kim, HM [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
Euler-Lagrange mapping; Hyers-Ulam stability; quadratic mapping;
D O I
10.1016/j.na.2004.07.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to solve the stability problem of Ulam for an approximate mapping f : A -> B of the following quadratic functional equation of Euler-Lagrange (a + b)aQ(x) + (a + b)bQ(y) = Q(ax + by) + abQ(x - y) for all x, y is an element of A with A and B linear spaces. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1093 / 1104
页数:12
相关论文
共 16 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
[Anonymous], 1992, CHINESE J MATH
[3]  
Cholewa P. W., 1984, AEQUATIONES MATH, V27, P76, DOI DOI 10.1007/BF02192660
[4]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[5]  
Czerwik S., 1994, Stability of Mappings of Hyers-Ulam Type, P81
[6]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[7]   STABILITY OF ISOMETRIES [J].
GRUBER, PM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :263-277
[8]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables
[9]  
Hyers D. H., 1992, Aequationes Math., V44, P125, DOI [10.1007/BF01830975, DOI 10.1007/BF01830975]
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224