Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network

被引:102
作者
Lee, Jeong Hyun [1 ,2 ]
Joo, Ijin [3 ]
Kang, Tae Wook [1 ,2 ]
Paik, Yong Han [4 ]
Sinn, Dong Hyun [4 ]
Ha, Sang Yun [5 ]
Kim, Kyunga [6 ]
Choi, Choonghwan [7 ]
Lee, Gunwoo [7 ]
Yi, Jonghyon [7 ]
Bang, Won-Chul [7 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, 81 Irwon Ro, Seoul 06351, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Ctr Imaging Sci, 81 Irwon Ro, Seoul 06351, South Korea
[3] Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Dept Med, Samsung Med Ctr, Sch Med, Seoul, South Korea
[5] Sungkyunkwan Univ, Sch Med, Dept Pathol, Samsung Med Ctr, Seoul, South Korea
[6] Samsung Med Ctr, Res Inst Future Med, Stat & Data Ctr, Seoul, South Korea
[7] Samsung Elect Co Ltd, Hlth & Med Equipment Business, Med Imaging R&D Grp, Seoul, South Korea
关键词
Liver; Ultrasonography; Fibrosis; Deep learning; TRANSIENT ELASTOGRAPHY; DIAGNOSTIC PERFORMANCE; CIRRHOSIS; BIOPSY; ULTRASOUND; DISEASES; SURFACE; US;
D O I
10.1007/s00330-019-06407-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives The aim of this study was to develop a deep convolutional neural network (DCNN) for the prediction of the METAVIR score using B-mode ultrasonography images. Methods Datasets from two tertiary academic referral centers were used. A total of 13,608 ultrasonography images from 3446 patients who underwent surgical resection, biopsy, or transient elastography were used for training a DCNN for the prediction of the METAVIR score. Pathological specimens or estimated METAVIR scores derived from transient elastography were used as a reference standard. A four-class model (F0 vs. F1 vs. F23 vs. F4) was developed. Diagnostic performance of the algorithm was validated on a separate internal test set of 266 patients with 300 images and external test set of 572 patients with 1232 images. Performance in classification of cirrhosis was compared between the DCNN and five radiologists. Results The accuracy of the four-class model was 83.5% and 76.4% on the internal and external test set, respectively. The area under the receiver operating characteristic curve (AUC) for classification of cirrhosis (F4) was 0.901 (95% confidence interval [CI], 0.865-0.937) on the internal test set and 0.857 (95% CI, 0.825-0.889) on the external test set, respectively. The AUC of the DCNN for classification of cirrhosis (0.857) was significantly higher than that of all five radiologists (AUC range, 0.656-0.816; p value < 0.05) using the external test set. Conclusions The DCNN showed high accuracy for determining METAVIR score using ultrasonography images and achieved better performance than that of radiologists in the diagnosis of cirrhosis.
引用
收藏
页码:1264 / 1273
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 2015, J HEPATOL, V63, P237, DOI 10.1016/j.jhep.2015.04.006
[2]   Ultrasonographic evaluation of liver surface and transient elastography in clinically doubtful cirrhosis [J].
Berzigotti, Annalisa ;
Abraldes, Juan G. ;
Tandon, Puneeta ;
Erice, Eva ;
Gilabert, Rosa ;
Carlos Garcia-Pagan, Juan ;
Bosch, Jaime .
JOURNAL OF HEPATOLOGY, 2010, 52 (06) :846-853
[3]   Liver diseases in developing countries [J].
Cainelli, Francesca .
WORLD JOURNAL OF HEPATOLOGY, 2012, 4 (03) :66-67
[4]   Direct comparison of diagnostic performance of transient elastography in patients with chronic hepatitis B and chronic hepatitis C [J].
Cardoso, Ana-Carolina ;
Carvalho-Filho, Roberto J. ;
Stern, Christiane ;
Dipumpo, Alexandrine ;
Giuily, Nathalie ;
Ripault, Marie-Pierre ;
Asselah, Tarik ;
Boyer, Nathalie ;
Lada, Olivier ;
Castelnau, Corinne ;
Martinot-Peignoux, Michelle ;
Valla, Dominique-Charles ;
Bedossa, Pierre ;
Marcellin, Patrick .
LIVER INTERNATIONAL, 2012, 32 (04) :612-621
[5]  
Castelvecchi D, 2016, NATURE, V537, P20, DOI [10.1038/nature.2016.20491, 10.1038/538020a]
[6]   Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C [J].
Castéra, L ;
Vergniol, J ;
Foucher, J ;
Le Bail, B ;
Chanteloup, E ;
Haaser, M ;
Darriet, M ;
Couzigou, P ;
De Lédinghen, V .
GASTROENTEROLOGY, 2005, 128 (02) :343-350
[7]   Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver [J].
Choi, Kyu Jin ;
Jang, Jong Keon ;
Lee, Seung Soo ;
Sung, Yu Sub ;
Shim, Woo Hyun ;
Kim, Ho Sung ;
Yun, Jessica ;
Choi, Jin-Young ;
Lee, Yedaun ;
Kang, Bo-Kyeong ;
Kim, Jin Hee ;
Kim, So Yeon ;
Yu, Eun Sil .
RADIOLOGY, 2018, 289 (03) :688-697
[8]   Severe liver fibrosis or cirrhosis: Accuracy of US for detection - Analysis of 300 cases [J].
Colli, A ;
Fraquelli, M ;
Andreoletti, M ;
Marino, B ;
Zuccoli, E ;
Conte, D .
RADIOLOGY, 2003, 227 (01) :89-94
[9]  
Dietrich CF, 2017, ULTRASCHALL MED, V38, pE52, DOI [10.1055/a-0641-0076, 10.1055/s-0043-103952]
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+