Predictions of the responsivity of terahertz quantum well infrared photodetectors

被引:0
作者
Gadir, MA [1 ]
Harrison, P [1 ]
Soref, RA [1 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, IMP, Leeds LS2 9JT, W Yorkshire, England
来源
QUANTUM SENSING: EVOLUTION AND REVOLUTION FROM PAST TO FUTURE | 2003年 / 4999卷
关键词
QWIP; photocurrent; capture probability; photoconductive gain; detection wavelength;
D O I
10.1117/12.480307
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter focuses on the first-principles model of the photocurrent in quantum well infrared photodetectors (QWIPs) derived in reference [1]. The model explores the absorption coefficient measured experimentally. Then we move to show how the responsivity and quantum efficiency vary with a. The work in this paper shows that the device response indeed increases as QWIPs are designed and fabricated to detect longer wavelengths despite the fall in device performance as a result of the growing effect of the dark (noise) current.
引用
收藏
页码:200 / 209
页数:10
相关论文
共 50 条
[21]   Optical and transport properties of single quantum well infrared photodetectors [J].
Shimada, Y ;
Hirakawa, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (3B) :1421-1423
[22]   Photoluminescence characterization in GaAs/AlGaAs quantum well infrared photodetectors [J].
Cai, WY ;
Li, ZF ;
Li, N ;
Lu, W ;
Zhou, JM ;
Huang, Q .
FOURTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS, 2000, 4086 :294-297
[23]   InGaAsP/InP long wavelength quantum well infrared photodetectors [J].
Sun, L. ;
Zhang, D. H. ;
Yuan, K. H. ;
Yoon, S. F. ;
Radhakrishnan, K. .
THIN SOLID FILMS, 2007, 515 (10) :4450-4453
[24]   An FDTD approach to the simulation of quantum-well infrared photodetectors [J].
Luca Stabellini ;
Wei Lu ;
Alfredo De Rossi ;
Thomas Antoni ;
Mathieu Carras ;
Stefano Trillo ;
Gaetano Bellanca .
Optical and Quantum Electronics, 2008, 40 :1085-1090
[25]   Development of quantum well, quantum dot, and type II superlattice infrared photodetectors [J].
Ting, David Z. ;
Soibel, Alexander ;
Keo, Sam A. ;
Rafol, Sir B. ;
Mumolo, Jason M. ;
Liu, John K. ;
Hill, Cory J. ;
Khoshakhlagh, Arezou ;
Hoeglund, Linda ;
Luong, Edward M. ;
Gunapala, Sarath D. .
JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
[26]   Modeling the capture probability and enhancing the photoconductive gain in quantum well infrared photodetectors (QWIPs) [J].
Gadir, MA ;
Harrison, P ;
Soref, RA .
INFRARED PHYSICS & TECHNOLOGY, 2003, 44 (5-6) :481-485
[27]   Modeling of dark current in mid-infrared quantum-well infrared photodetectors [J].
Castellano, Fabrizio ;
Iotti, Rita C. ;
Rossi, Fausto ;
Faist, Jerome ;
Lhuillier, Emmanuel ;
Berger, Vincent .
INFRARED PHYSICS & TECHNOLOGY, 2009, 52 (06) :220-223
[28]   Avalanche multiplication process in InGaAsP/InP quantum well infrared photodetectors [J].
Sun, Lu ;
Su, Binghua ;
Lu, Lianggang ;
Xue, Junwen ;
Zhang, Dao Hua .
2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, :1913-1916
[29]   First principles calculations of the dark current in quantum well infrared photodetectors [J].
Etteh, NEI ;
Harrison, P .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4) :381-384
[30]   Tuning of the detection wavelength in quantum dots-in-a-well infrared photodetectors [J].
Hoglund, L. ;
Holtz, P. O. ;
Asplund, C. ;
Wang, Q. ;
Almqvist, S. ;
Petrini, E. ;
Malm, H. ;
Pettersson, H. ;
Andersson, J. Y. .
INFRARED TECHNOLOGY AND APPLICATIONS XXXIV, PTS 1 AND 2, 2008, 6940