Design of a finite time passivity based adaptive sliding mode control implementing on a spacecraft attitude dynamic simulator

被引:12
|
作者
Shahna, Mehdi Heydari [1 ]
Abedi, Mostafa [1 ]
机构
[1] Shahid Beheshti Univ, Dept Elect Engn, Tehran, Iran
关键词
Attitude control; Adaptive; Sliding mode; Passivity; Unwinding; Virtual velocity; Fault tolerance; Uncertainty; FAULT-TOLERANT CONTROL; MARKOVIAN JUMP SYSTEMS; RIGID SPACECRAFT; TRACKING CONTROL; STABILIZATION; STABILITY; SATELLITE;
D O I
10.1016/j.conengprac.2021.104866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Design of a passivity-based adaptive robust control for attitude tracking of a three-axis satellite is investigated in this paper. By defining a virtual angular velocity for the satellite Kinematics and utilizing the finite time passivity features, it is proved that the developed method drives the system trajectories into the equilibrium point for various signs of the satellite quaternions. Therefore, the closer equilibrium point is always selected and the unwinding problem is resolved. A novel structure is defined for the sliding manifold that uses the selected virtual velocity. Then, a dynamic feedback controller is developed that considers uncertain parameters and faulty actuators (unknown inputs). The upper bounds of unknown inputs and unknown inertia moments are estimated by the developed adaptation mechanisms. A three degrees of freedom dumbbell style dynamic simulator has been developed to provide a rigorous evaluation of the suggested algorithms in a dynamic condition near to space. The proposed algorithms have been implemented for both reaction wheels and thrusters as actuators and the effectiveness of the introduced control methodologies was proved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement
    Shao, Shikai
    Zong, Qun
    Tian, Bailing
    Wang, Fang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (12): : 4656 - 4674
  • [32] Attitude tracking control for spacecraft with robust adaptive RBFNN augmenting sliding mode control
    Zou, Yao
    AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 56 : 197 - 204
  • [33] Dynamic Sliding Mode Attitude Tracking Control for Flexible Spacecraft
    Dong, Rui-Qi
    Dong, Xi
    Wu, Ai-Guo
    Zhang, Ying
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 509 - 514
  • [34] Robust adaptive finite time control for spacecraft global attitude tracking maneuvers
    Gao, Jiwei
    Cai, Yuanli
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2016, 230 (06) : 1027 - 1043
  • [35] Attitude output feedback control for rigid spacecraft with finite-time convergence
    Hu, Qinglei
    Niu, Guanglin
    ISA TRANSACTIONS, 2017, 70 : 173 - 186
  • [36] Terminal Sliding Mode Control for Attitude Tracking of Spacecraft under Input Saturation
    Guo, Yong
    Song, Shen-Min
    Li, Xue-Hui
    Li, Peng
    JOURNAL OF AEROSPACE ENGINEERING, 2017, 30 (03)
  • [37] Anti-Unwinding Sliding Mode Attitude Maneuver Control for Rigid Spacecraft
    Dong, Rui-Qi
    Wu, Ai-Guo
    Zhang, Ying
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 978 - 985
  • [38] Disturbance Observer-Based Adaptive Finite-Time Attitude Tracking Control for Rigid Spacecraft
    Zhang, Jinhui
    Zhao, Weishuang
    Shen, Ganghui
    Xia, Yuanqing
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (11): : 6606 - 6613
  • [39] Networked flexible spacecraft attitude maneuver based on adaptive fuzzy sliding mode control
    Dong, Chaoyang
    Xu, Lijie
    Chen, Yu
    Wang, Qing
    ACTA ASTRONAUTICA, 2009, 65 (11-12) : 1561 - 1570
  • [40] Fault tolerant attitude control for spacecraft based on adaptive fast terminal sliding mode
    Zhao, Lin
    Yan, Xin
    Gao, Shuai-He
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (05): : 982 - 988