Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion

被引:10
|
作者
Li, Weidong [1 ]
Zhang, Xinyu [1 ]
Wang, Yaqian [1 ]
Yan, Zhihuan [1 ]
Peng, Rong [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Knowledge graph completion; graph neural network; link prediction; information fusion;
D O I
10.1109/ACCESS.2019.2950230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graph (KG) usually contains billions of facts about the real world, where a fact is represented as a triplet in the form of (head entity, relation, tail entity). KG is a complex network and consists of numerous nodes (entities) and edges (relations). Given that most KGs are noisy and far from being complete, KG analysis and completion methods are becoming more and more important. Knowledge graph embedding (KGE) aims to embed entities and relations in a low dimensional and continuous vector space, which is proven to be a quite efficient and effective method in knowledge graph completion tasks. KGE models devise various kinds of score functions to evaluate each fact in KG, which assign high points for true facts and low points for invalid ones. In a KG of the real world, some nodes may have hundreds of links with other nodes. There is a wealth of information around an entity, and the surrounding information (i.e., the sub-graph structure information) of one entity can make a significant contribution to predicting new facts. However, many previous works including, translational approaches such as Trans(E, H, R, and D), factorization approaches such as DistMult, ComplEx, and other deep learning approaches such as NTN, ConvE, concentrate on rating each fact in an isolated and separated way and lack a specially designed mechanism to learn the sub-graph structure information of the entity in KG. To conquer this challenge, we leverage the information fusion mechanism (Graph2Seq) used in graph neural network which is specially designed for graph-structured data, to learn fusion embeddings for entities in KG. And a novel fusion embedding learning KGE model (referred as G2SKGE) which aims to learn the sub-graph structure information of the entity in KG is proposed. With empirical experiments on four benchmark datasets, our proposed model achieves promising results and outperforms the state-of-the-art models.
引用
收藏
页码:157960 / 157971
页数:12
相关论文
共 50 条
  • [1] Learning Embedding for Knowledge Graph Completion with Hypernetwork
    Le, Thanh
    Nguyen, Duy
    Le, Bac
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 16 - 28
  • [2] Graph and Question Interaction Aware Graph2Seq Model for Knowledge Base Question Generation
    Li, Chen
    Bai, Jun
    Wang, Chuanarui
    Hu, Yuanhao
    Rong, Wenge
    Xiong, Zhang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Research on Knowledge Graph Completion Based upon Knowledge Graph Embedding
    Feng, Tuoyu
    Wu, Yongsheng
    Li, Libing
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1335 - 1342
  • [4] A type-augmented knowledge graph embedding framework for knowledge graph completion
    He, Peng
    Zhou, Gang
    Yao, Yao
    Wang, Zhe
    Yang, Hao
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [5] A type-augmented knowledge graph embedding framework for knowledge graph completion
    Peng He
    Gang Zhou
    Yao Yao
    Zhe Wang
    Hao Yang
    Scientific Reports, 13 (1)
  • [6] Enhancing Knowledge Graph Completion By Embedding Correlations
    Pal, Soumajit
    Urbani, Jacopo
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2247 - 2250
  • [7] ProjE: Embedding Projection for Knowledge Graph Completion
    Shi, Baoxu
    Weninger, Tim
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1236 - 1242
  • [8] Diachronic Embedding for Temporal Knowledge Graph Completion
    Goel, Rishab
    Kazemi, Seyed Mehran
    Brubaker, Marcus
    Poupart, Pascal
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3988 - 3995
  • [9] Federated knowledge graph completion via embedding-contrastive learning
    Chen, Mingyang
    Zhang, Wen
    Yuan, Zonggang
    Jia, Yantao
    Chen, Huajun
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [10] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734