Toric varieties, monoid schemes and cdh descent

被引:33
作者
Cortinas, Guillermo [1 ]
Haesemeyer, Christian [2 ]
Walker, Mark E. [3 ]
Weibel, Charles [4 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Inst Santalo, FCEyN, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[4] Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 698卷
基金
美国国家科学基金会;
关键词
ALGEBRAIC K-THEORY; DESINGULARIZATION; RINGS;
D O I
10.1515/crelle-2012-0123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties and schemes, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop many notions for monoid schemes based on classical algebraic geometry, such as separated and proper maps and resolution of singularities.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 33 条
[1]  
[Anonymous], 1990, Progr. Math.
[2]   Desingularization of toric and binomial varieties [J].
Bierstone, Edward ;
Milman, Pierre D. .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (03) :443-486
[3]   Local projective model structures on simplicial presheaves [J].
Blander, BA .
K-THEORY, 2001, 24 (03) :283-301
[4]  
Bousfield A. K., 1978, GEOMETRIC APPL HOMOT, V658, P80
[5]  
Connes A, 2011, J ALGEBRAIC GEOM, V20, P525
[6]   Schemes over F1 and zeta functions [J].
Connes, Alain ;
Consani, Caterina .
COMPOSITIO MATHEMATICA, 2010, 146 (06) :1383-1415
[7]   Fun with F1 [J].
Connes, Alain ;
Consani, Caterina ;
Marcolli, Matilde .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1532-1561
[8]   Cyclic homology, cdh-cohomology and negative K-theory [J].
Cortinas, G. ;
Haesemeyer, C. ;
Schlichting, M. ;
Weibel, C. .
ANNALS OF MATHEMATICS, 2008, 167 (02) :549-573
[9]  
Deitmar A., 2008, Beitrage Algebra Geom, V49, P517
[10]  
Eisenbud D., 2000, GRAD TEXT M, V197