Sublinear Compressive Sensing Reconstruction via Belief Propagation Decoding

被引:21
作者
Pham, Hoa V. [1 ]
Dai, Wei [1 ]
Milenkovic, Olgica [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4 | 2009年
关键词
D O I
10.1109/ISIT.2009.5205667
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new compressive sensing scheme, based on codes of graphs, that allows for joint design of sensing matrices and low complexity reconstruction algorithms. The compressive sensing matrices can be shown to offer asymptotically optimal performance when used in combination with OMP methods. For more elaborate greedy reconstruction schemes, we propose a new family of list decoding and multiple-basis belief propagation algorithms. Our simulation results indicate that the proposed CS scheme offers good complexity-performance trade-offs for several classes of sparse signals.
引用
收藏
页码:674 / 678
页数:5
相关论文
共 10 条