Thermal conductivity modeling of micro- and nanoporous silicon

被引:33
|
作者
Liu, Liang-Chun [1 ]
Huang, Mei-Jiau [1 ]
机构
[1] Natl Taiwan Univ, Dept Mech Engn, Taipei 106, Taiwan
关键词
Phonon transport; Porous material; Diffusive limit; Ballistic limit; Morphic effect; PHONON TRANSPORT; MONTE-CARLO; COMPOSITES; SIMULATION; HEAT;
D O I
10.1016/j.ijthermalsci.2010.04.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study aims at developing an approximate model to predict the effective thermal conductivity of porous silicon at both micro- and nano- scales. The model accounts for different transport mechanisms and reduces to the Fourier's law and phonon radiative transport expression in the diffusive and ballistic limits respectively. The effects of the pore size, the pore shape (square, rectangular, and triangular cylinders), and the porosity on the thermal conductivity are all taken into consideration. In particular, the geometrical effect is addressed by introducing the geometry-dependent view factor and porosity function. The accuracy of the proposed model is confirmed by comparing its predictions with the Monte Carlo simulations for two pore sizes, 100 nm and 500 nm, and a porosity ranging between 0.06 and 0.31. In addition, the geometric effect on the heat transport is also confirmed, which is found more conspicuous in the ballistic limit. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1547 / 1554
页数:8
相关论文
共 50 条
  • [1] Modeling Thermoelectric Performance in Nanoporous Nanocrystalline Silicon
    Oliveira, Laura Rita de Sousa
    Vargiamidis, Vassilios
    Neophytou, Neophytos
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 896 - 903
  • [2] Thermal conductivity temperature dependence of water confined in nanoporous silicon
    Wang, Xiaorui
    Goncalves, William
    Lacroix, David
    Isaiev, Mykola
    Gomes, Severine
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)
  • [3] THERMAL CONDUCTIVITY OF NANOPOROUS GLASS ALUMINA FILM AND COMPOSITES
    Huang, Congliang
    Feng, Yanhui
    Zhang, Xinxin
    Wang, Ge
    MODERN PHYSICS LETTERS B, 2014, 28 (03):
  • [4] Comparison of structural, thermal and proton conductivity properties of micro- and nanocelluloses
    Jankowska, I.
    Pankiewicz, R.
    Pogorzelec-Glaser, K.
    Lawniczak, P.
    Lapinski, A.
    Tritt-Goc, J.
    CARBOHYDRATE POLYMERS, 2018, 200 : 536 - 542
  • [5] REVISITING THE THERMAL CONDUCTIVITY OF NANOPOROUS MATERIALS
    Bera, Chandan
    Mingo, Natalio
    Volz, S.
    PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, VOL 3, 2010, : 177 - 181
  • [6] Thermal conductivity modeling of circular-wire nanocomposites
    Hsieh, Tse-Yang
    Yang, Jaw-Yen
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
  • [7] Surface effects on the thermal conductivity of silicon nanowires
    Li, Hai-Peng
    Zhang, Rui-Qin
    CHINESE PHYSICS B, 2018, 27 (03)
  • [8] Thermal conductivity reduction in silicon fishbone nanowires
    Maire, Jeremie
    Anufriev, Roman
    Hori, Takuma
    Shiomi, Junichiro
    Volz, Sebastian
    Nomura, Masahiro
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide
    Crocombette, Jean-Paul
    Gelebart, Lionel
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
  • [10] Thermal conductivity of silicon nanowire arrays with controlled roughness
    Feser, Joseph P.
    Sadhu, Jyothi S.
    Azeredo, Bruno P.
    Hsu, Keng H.
    Ma, Jun
    Kim, Junhwan
    Seong, Myunghoon
    Fang, Nicholas X.
    Li, Xiuling
    Ferreira, Placid M.
    Sinha, Sanjiv
    Cahill, David G.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)