Pinching estimates and motion of hypersurfaces by curvature functions

被引:101
作者
Andrews, Ben [1 ]
机构
[1] Australian Natl Univ, CMA, Canberra, ACT 0200, Australia
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 608卷
基金
澳大利亚研究理事会;
关键词
D O I
10.1515/CRELLE.2007.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Second derivative pinching estimates are proved for a class of parabolic equations, including motion of hypersurfaces by curvature functions such as quotients of elementary symmetric functions of curvature. The estimates imply convergence of convex hypersurfaces to spheres under these flows, improving earlier results of B. Chow and the author. The result is obtained via a detailed analysis of gradient terms in the equations satisfied by second derivatives.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 10 条
[2]  
ANDREWS B, MATHAP0402235
[4]  
CHOW B, 1985, J DIFFER GEOM, V22, P117
[6]  
Gerhardt C, 1996, J DIFFER GEOM, V43, P612
[7]  
HAMILTON RS, 1986, J DIFFER GEOM, V24, P153
[8]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[9]  
HUISKEN G, 1984, J DIFFER GEOM, V20, P237
[10]  
LIEBERMAN GM, 1996, SECOND ORDER PARABOL