CyTOFmerge: integrating mass cytometry data across multiple panels

被引:18
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 36 条
[31]   Immuno Tomography (IT) and Imaging Mass Cytometry (IMC) for constructing spatially resolved, multiplexed 3D IMC data sets [J].
Gheiratmand, Ladan ;
Brown, Donald J. ;
Sandkuijl, Daaf ;
Loboda, Alexander ;
Jester, James V. .
OCULAR SURFACE, 2022, 25 :49-54
[32]   Beaconet: A Reference-Free Method for Integrating Multiple Batches of Single-Cell Transcriptomic Data in Original Molecular Space [J].
Xu, Han ;
Ye, Yusen ;
Duan, Ran ;
Gao, Yong ;
Hu, Yuxuan ;
Gao, Lin .
ADVANCED SCIENCE, 2024, 11 (26)
[33]   Integrating genetic and proteomic data to elucidate the association between immune system and blood-brain barrier dysfunction with multiple sclerosis risk and severity [J].
Sun, Dongren ;
Wang, Rui ;
Du, Qin ;
Chen, Hongxi ;
Shi, Ziyan ;
Zhang, Yangyang ;
Zhang, Nana ;
Wang, Xiaofei ;
Zhou, Hongyu .
JOURNAL OF AFFECTIVE DISORDERS, 2024, 362 :652-660
[34]   Modified Decision Tree with Custom Splitting Logic Improves Generalization across Multiple Brains' Proteomic Data Sets of Alzheimer's Disease [J].
Ivanov, Mark V. ;
Kopeykina, Anna S. ;
Kazakova, Elizaveta M. ;
Tarasova, Irina A. ;
Sun, Zhao ;
Postoenko, Valeriy I. ;
Yang, Jinghua ;
Gorshkov, Mikhail V. .
JOURNAL OF PROTEOME RESEARCH, 2025, 24 (03) :1053-1066
[35]   Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization [J].
Deng, Jin ;
Zeng, Weiming ;
Luo, Sizhe ;
Kong, Wei ;
Shi, Yuhu ;
Li, Ying ;
Zhang, Hua .
INFORMATION SCIENCES, 2021, 576 :24-36
[36]   A targeted strategy for analyzing untargeted mass spectral data to identify lanostane-type triterpene acids in Poria cocos by integrating a scientific information system and liquid chromatography-tandem mass spectrometry combined with ion mobility spectrometry [J].
Feng, Gui-Fang ;
Zheng, Yan ;
Sun, Yufei ;
Liu, Shu ;
Pi, Zie-Feng ;
Song, Feng-Rui ;
Liu, Zhi-Qiang .
ANALYTICA CHIMICA ACTA, 2018, 1033 :87-99