CyTOFmerge: integrating mass cytometry data across multiple panels

被引:17
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 35 条
[21]   Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry [J].
Zhang, Fan ;
Wei, Kevin ;
Slowikowski, Kamil ;
Fonseka, Chamith Y. ;
Rao, Deepak A. ;
Kelly, Stephen ;
Goodman, Susan M. ;
Tabechian, Darren ;
Hughes, Laura B. ;
Salomon-Escoto, Karen ;
Watts, Gerald F. M. ;
Jonsson, A. Helena ;
Rangel-Moreno, Javier ;
Meednu, Nida ;
Rozo, Cristina ;
Apruzzese, William ;
Eisenhaure, Thomas M. ;
Lieb, David J. ;
Boyle, David L. ;
Mandelin, Arthur M., II ;
Boyce, Brendan F. ;
DiCarlo, Edward ;
Gravallese, Ellen M. ;
Gregersen, Peter K. ;
Moreland, Larry ;
Firestein, Gary S. ;
Hacohen, Nir ;
Nusbaum, Chad ;
Lederer, James A. ;
Perlman, Harris ;
Pitzalis, Costantino ;
Filer, Andrew ;
Holers, V. Michael ;
Bykerk, Vivian P. ;
Donlin, Laura T. ;
Anolik, Jennifer H. ;
Brenner, Michael B. ;
Raychaudhuri, Soumya ;
Albrecht, Jennifer ;
Bridges, S. Louis, Jr. ;
Buckley, Christopher D. ;
Buckner, Jane H. ;
Dolan, James ;
Guthridge, Joel M. ;
Gutierrez-Arcelus, Maria ;
Ivashkiv, Lionel B. ;
James, Eddie A. ;
James, Judith A. ;
Keegan, Josh ;
Lee, Yvonne C. .
NATURE IMMUNOLOGY, 2019, 20 (07) :928-+
[22]   SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies [J].
Guo, Tiantian ;
Yuan, Zhiyuan ;
Pan, Yan ;
Wang, Jiakang ;
Chen, Fengling ;
Zhang, Michael Q. ;
Li, Xiangyu .
GENOME BIOLOGY, 2023, 24 (01)
[23]   Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data [J].
Weber, Lukas M. ;
Robinson, Mark D. .
CYTOMETRY PART A, 2016, 89A (12) :1084-1096
[24]   Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry [J].
Rybakowska, Paulina ;
Alarcon-Riquelme, Marta E. ;
Maranon, Concepcion .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 (18) :874-886
[25]   DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data [J].
Cheng, Lijun ;
Karkhanis, Pratik ;
Gokbag, Birkan ;
Liu, Yueze ;
Li, Lang .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (04)
[26]   An optimized method to measure human FOXP3+ regulatory Tcells from multiple tissue types using mass cytometry [J].
Dawson, Nicholas A. J. ;
Lam, Avery J. ;
Cook, Laura ;
Hoeppli, Romy E. ;
Broady, Raewyn ;
Pesenacker, Anne M. ;
Levings, Megan K. .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2018, 48 (08) :1415-1419
[27]   Mass Cytometry Discovers Two Discrete Subsets of CD39-Treg Which Discriminate MGUS From Multiple Myeloma [J].
Marsh-Wakefield, Felix ;
Kruzins, Annabel ;
McGuire, Helen M. ;
Yang, Shihong ;
Bryant, Christian ;
de St Groth, Barbara Fazekas ;
Nassif, Najah ;
Byrne, Scott N. ;
Gibson, John ;
Brown, Christina ;
Larsen, Stephen ;
McCulloch, Derek ;
Boyle, Richard ;
Clark, Georgina ;
Joshua, Douglas ;
Ho, Phoebe Joy ;
Vuckovic, Slavica .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[28]   Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma [J].
Wang, Qiangsheng ;
Shi, Qiqin ;
Wang, Zhenqian ;
Lu, Jiawen ;
Hou, Jian .
BMC MEDICINE, 2023, 21 (01)
[29]   PICAFlow: a complete R workflow dedicated to flow/mass cytometry data, from pre-processing to deep and comprehensive analysis [J].
Regnier, Paul ;
Marques, Cindy ;
Saadoun, David .
BIOINFORMATICS ADVANCES, 2023, 3 (01)
[30]   Immuno Tomography (IT) and Imaging Mass Cytometry (IMC) for constructing spatially resolved, multiplexed 3D IMC data sets [J].
Gheiratmand, Ladan ;
Brown, Donald J. ;
Sandkuijl, Daaf ;
Loboda, Alexander ;
Jester, James V. .
OCULAR SURFACE, 2022, 25 :49-54