CyTOFmerge: integrating mass cytometry data across multiple panels

被引:17
|
作者
Abdelaal, Tamim [1 ,2 ]
Hollt, Thomas [2 ,3 ]
van Unen, Vincent [4 ]
Lelieveldt, Boudewijn P. F. [1 ,2 ,5 ]
Koning, Frits [4 ]
Reinders, Marcel J. T. [1 ,2 ]
Mahfouz, Ahmed [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Bioinformat Lab, NL-2628 XE Delft, Netherlands
[2] Leiden Univ, Med Ctr, Leiden Computat Biol Ctr, NL-2333 ZC Leiden, Netherlands
[3] Delft Univ Technol, Comp Graph & Visualizat Grp, NL-2628 XE Delft, Netherlands
[4] Leiden Univ, Med Ctr, Dept Immunohematol & Blood Transfus, NL-2333 ZA Leiden, Netherlands
[5] Leiden Univ, Med Ctr, Dept Radiol, NL-2333 ZA Leiden, Netherlands
基金
欧盟地平线“2020”;
关键词
IMMUNE; ATLAS; SPACE; CELLS;
D O I
10.1093/bioinformatics/btz180
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection.
引用
收藏
页码:4063 / 4071
页数:9
相关论文
共 35 条
  • [1] Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study
    Thomsen, Liv Cecilie Vestrheim
    Kleinmanns, Katrin
    Anandan, Shamundeeswari
    Gullaksen, Stein-Erik
    Abdelaal, Tamim
    Iversen, Grete Alrek
    Akslen, Lars Andreas
    Mccormack, Emmet
    Bjorge, Line
    CANCERS, 2023, 15 (20)
  • [2] Testing for differential abundance in mass cytometry data
    Lun, Aaron T. L.
    Richard, Arianne C.
    Marioni, John C.
    NATURE METHODS, 2017, 14 (07) : 707 - +
  • [3] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [4] Predicting Cell Populations in Single Cell Mass Cytometry Data
    Abdelaal, Tamim
    van Unen, Vincent
    Hollt, Thomas
    Koning, Frits
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    CYTOMETRY PART A, 2019, 95A (07) : 769 - 781
  • [5] Gating mass cytometry data by deep learning
    Li, Huamin
    Shaham, Uri
    Stanton, Kelly P.
    Yao, Yi
    Montgomery, Ruth R.
    Kluger, Yuval
    BIOINFORMATICS, 2017, 33 (21) : 3423 - 3430
  • [6] Cluster stability in the analysis of mass cytometry data
    Melchiotti, Rossella
    Gracio, Filipe
    Kordasti, Shahram
    Todd, Alan K.
    de Rinaldis, Emanuele
    CYTOMETRY PART A, 2017, 91A (01) : 73 - 84
  • [7] Compositional Data Analysis using Kernels in mass cytometry data
    Rudra, Pratyaydipta
    Baxter, Ryan
    Hsieh, Elena W. Y.
    Ghosh, Debashis
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [8] Mass Cytometry as a Tool for Investigating Senescence in Multiple Model Systems
    Abdul-Aziz, Amina
    Devine, Raymond D.
    Lyberger, Justin M.
    Chang, Hsiaochi
    Kovacs, Amy
    Lerma, James R.
    Rogers, Andrew M.
    Byrd, John C.
    Hertlein, Erin
    Behbehani, Gregory K.
    CELLS, 2023, 12 (16)
  • [9] A comparison framework and guideline of clustering methods for mass cytometry data
    Liu, Xiao
    Song, Weichen
    Wong, Brandon Y.
    Zhang, Ting
    Yu, Shunying
    Lin, Guan Ning
    Ding, Xianting
    GENOME BIOLOGY, 2019, 20 (01)
  • [10] Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
    van Unen, Vincent
    Hollt, Thomas
    Pezzotti, Nicola
    Li, Na
    Reinders, Marcel J. T.
    Eisemann, Elmar
    Koning, Frits
    Vilanova, Anna
    Lelieveldt, Boudewijn P. F.
    NATURE COMMUNICATIONS, 2017, 8