Sub-10 nm Carbon Nanotube Transistor

被引:582
作者
Franklin, Aaron D. [1 ]
Luisier, Mathieu [2 ]
Han, Shu-Jen [1 ]
Tulevski, George [1 ]
Breslin, Chris M. [1 ]
Gignac, Lynne [1 ]
Lundstrom, Mark S. [3 ]
Haensch, Wilfried [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Carbon nanotube; field-effect transistor; sub-10; nm; transistor scaling; CNTFET; HIGH-PERFORMANCE; ELECTRONICS; PROGRESS;
D O I
10.1021/nl203701g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/mu m) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.
引用
收藏
页码:758 / 762
页数:5
相关论文
共 21 条
  • [1] Carbon nanotubes for high-performance electronics - Progress and prospect
    Appenzeller, J.
    [J]. PROCEEDINGS OF THE IEEE, 2008, 96 (02) : 201 - 211
  • [2] Progress in Carbon Nanotube Electronics and Photonics
    Avouris, Phaedon
    Martel, Richard
    [J]. MRS BULLETIN, 2010, 35 (04) : 306 - 313
  • [3] Benchmarking nanotechnology for high-performance and low-power logic transistor applications
    Chau, R
    Datta, S
    Doczy, M
    Doyle, B
    Jin, J
    Kavalieros, J
    Majumdar, A
    Metz, M
    Radosavljevic, M
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) : 153 - 158
  • [4] Doris B., 2003, IEEE International Electron Devices Meeting 2003, p27.3.1, DOI 10.1109/IEDM.2003.1269360
  • [5] Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
  • [6] Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating
    Franklin, Aaron D.
    Wong, H. -S. Philip
    Lin, Albert
    Chen, Zhihong
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (07) : 644 - 646
  • [7] Toward surround gates on vertical single-walled carbon nanotube devices
    Franklin, Aaron D.
    Sayer, Robert A.
    Sands, Timothy D.
    Fisher, Timothy S.
    Janes, David B.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02): : 821 - 826
  • [8] How do carbon nanotubes fit into the semiconductor roadmap?
    Graham, AP
    Duesberg, GS
    Hoenlein, W
    Kreupl, F
    Liebau, M
    Martin, R
    Rajasekharan, B
    Pamler, W
    Seidel, R
    Steinhoegl, W
    Unger, E
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06): : 1141 - 1151
  • [9] A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors
    Guo, J
    Datta, S
    Lundstrom, M
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (02) : 172 - 177
  • [10] Hysteresis suppression in self-assembled single-wall nanotube field effect transistors
    Hu, P.
    Zhang, C.
    Fasoli, A.
    Scardaci, V.
    Pisana, S.
    Hasan, T.
    Robertson, J.
    Milne, W. I.
    Ferrari, A. C.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) : 2278 - 2282