Sub-10 nm Carbon Nanotube Transistor

被引:592
作者
Franklin, Aaron D. [1 ]
Luisier, Mathieu [2 ]
Han, Shu-Jen [1 ]
Tulevski, George [1 ]
Breslin, Chris M. [1 ]
Gignac, Lynne [1 ]
Lundstrom, Mark S. [3 ]
Haensch, Wilfried [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Carbon nanotube; field-effect transistor; sub-10; nm; transistor scaling; CNTFET; HIGH-PERFORMANCE; ELECTRONICS; PROGRESS;
D O I
10.1021/nl203701g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/mu m) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.
引用
收藏
页码:758 / 762
页数:5
相关论文
共 21 条
[1]   Carbon nanotubes for high-performance electronics - Progress and prospect [J].
Appenzeller, J. .
PROCEEDINGS OF THE IEEE, 2008, 96 (02) :201-211
[2]   Progress in Carbon Nanotube Electronics and Photonics [J].
Avouris, Phaedon ;
Martel, Richard .
MRS BULLETIN, 2010, 35 (04) :306-313
[3]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[4]  
Doris B., 2003, IEEE International Electron Devices Meeting 2003, p27.3.1, DOI 10.1109/IEDM.2003.1269360
[5]  
Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
[6]   Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating [J].
Franklin, Aaron D. ;
Wong, H. -S. Philip ;
Lin, Albert ;
Chen, Zhihong .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (07) :644-646
[7]   Toward surround gates on vertical single-walled carbon nanotube devices [J].
Franklin, Aaron D. ;
Sayer, Robert A. ;
Sands, Timothy D. ;
Fisher, Timothy S. ;
Janes, David B. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02) :821-826
[8]   How do carbon nanotubes fit into the semiconductor roadmap? [J].
Graham, AP ;
Duesberg, GS ;
Hoenlein, W ;
Kreupl, F ;
Liebau, M ;
Martin, R ;
Rajasekharan, B ;
Pamler, W ;
Seidel, R ;
Steinhoegl, W ;
Unger, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1141-1151
[9]   A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors [J].
Guo, J ;
Datta, S ;
Lundstrom, M .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (02) :172-177
[10]   Hysteresis suppression in self-assembled single-wall nanotube field effect transistors [J].
Hu, P. ;
Zhang, C. ;
Fasoli, A. ;
Scardaci, V. ;
Pisana, S. ;
Hasan, T. ;
Robertson, J. ;
Milne, W. I. ;
Ferrari, A. C. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) :2278-2282