Multifractal analysis of L,vy fields

被引:16
作者
Durand, Arnaud [1 ]
Jaffard, Stephane [2 ]
机构
[1] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
[2] Univ Paris Est Creteil Val de Marne UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
Levy random fields; Multifractal analysis; Hausdorff measures and dimension; Sets with large intersection; Diophantine approximation; Ubiquity; LARGE INTERSECTION; SETS;
D O I
10.1007/s00440-011-0340-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the pointwise regularity properties of the L,vy fields introduced by T. Mori; these fields are the most natural generalization of L,vy processes to the multivariate setting. We determine their spectrum of singularities, and we show that their Holder singularity sets satisfy a large intersection property in the sense of K. Falconer.
引用
收藏
页码:45 / 96
页数:52
相关论文
共 43 条
[31]   Holder exponent for a two-parameter Levy process [J].
Lagaize, S .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (02) :270-285
[32]  
Ledoux M., 1991, A Series of Modern Surveys in Mathematics Series
[33]  
Levy P., 1965, PROCESSUS STOCHASTIQ
[34]  
Lifshits M.A., 1995, Mathematics and its Applications, V322, pxii+333
[35]  
Mattila P., 1995, GEOMETRY SETS MEASUR
[36]   REPRESENTATION OF LINEARLY ADDITIVE RANDOM-FIELDS [J].
MORI, T .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (01) :91-115
[37]  
Neveu J., 1977, ECOLE DET PROBABILIT, V598, P249
[38]   Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities [J].
Reynaud-Bouret, P .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (01) :103-153
[39]  
ROGERS C.A., 1970, Hausdorff Measures
[40]  
Samorodnitsky Samorodnitsky G. G., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance