Multifractal analysis of L,vy fields

被引:16
作者
Durand, Arnaud [1 ]
Jaffard, Stephane [2 ]
机构
[1] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
[2] Univ Paris Est Creteil Val de Marne UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
Levy random fields; Multifractal analysis; Hausdorff measures and dimension; Sets with large intersection; Diophantine approximation; Ubiquity; LARGE INTERSECTION; SETS;
D O I
10.1007/s00440-011-0340-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the pointwise regularity properties of the L,vy fields introduced by T. Mori; these fields are the most natural generalization of L,vy processes to the multivariate setting. We determine their spectrum of singularities, and we show that their Holder singularity sets satisfy a large intersection property in the sense of K. Falconer.
引用
收藏
页码:45 / 96
页数:52
相关论文
共 43 条
[11]   Heterogeneous ubiquitous systems in Rd and Hausdorff dimension [J].
Barral, Julien ;
Seuret, Stephane .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (03) :467-515
[12]   A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM [J].
Barral, Julien ;
Fournier, Nicolas ;
Jaffard, Stephane ;
Seuret, Stephane .
ANNALS OF PROBABILITY, 2010, 38 (05) :1924-1946
[13]   Ubiquity and large intersections properties under digit frequencies constraints [J].
Barral, Julien ;
Seuret, Stephane .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :527-548
[14]   Multifractal formalism and anisotropic selfsimilar functions [J].
Ben Slimane, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :329-363
[15]  
Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
[16]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[17]  
BLUMENTHAL RM, 1961, J MATH MECH, V10, P493
[18]  
Chentsov N.N., 1957, Theory of Probability and Its Applications, V2, P265, DOI DOI 10.1137/1102019
[19]   Sets with large intersection and ubiquity [J].
Durand, Arnaud .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 :119-144
[20]   Random wavelet series based on a tree-indexed Markov chain [J].
Durand, Arnaud .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (02) :451-477