Multifractal analysis of L,vy fields

被引:16
作者
Durand, Arnaud [1 ]
Jaffard, Stephane [2 ]
机构
[1] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
[2] Univ Paris Est Creteil Val de Marne UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
Levy random fields; Multifractal analysis; Hausdorff measures and dimension; Sets with large intersection; Diophantine approximation; Ubiquity; LARGE INTERSECTION; SETS;
D O I
10.1007/s00440-011-0340-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the pointwise regularity properties of the L,vy fields introduced by T. Mori; these fields are the most natural generalization of L,vy processes to the multivariate setting. We determine their spectrum of singularities, and we show that their Holder singularity sets satisfy a large intersection property in the sense of K. Falconer.
引用
收藏
页码:45 / 96
页数:52
相关论文
共 43 条
[1]  
Adler RJ., 1983, Stoch. Process. Appl, V15, P3, DOI [10.1016/0304-4149(83)90019-4, DOI 10.1016/0304-4149(83)90019-4]
[2]  
[Anonymous], ARXIV10023123
[3]  
[Anonymous], 1979, METRIC THEORY DIOPHA
[4]  
[Anonymous], SPRINGER MONOGRAPHS
[5]  
[Anonymous], 1993, OXFORD STUDIES PROBA
[6]  
[Anonymous], B SOC BRASIL MAT
[7]  
[Anonymous], PROBABILITY THEORY M
[8]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[9]   Random wavelet series [J].
Aubry, JM ;
Jaffard, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :483-514
[10]  
Ayache A, 2007, REV MAT IBEROAM, V23, P327