Some identities involving Bernoulli and Stirling numbers

被引:14
作者
Shirai, S [1 ]
Sato, K
机构
[1] Miyagi Univ Educ, Dept Math, Aoba Ku, Sendai, Miyagi 9800845, Japan
[2] Nihon Univ, Coll Engn, Dept Math, Koriyama, Fukushima 9638642, Japan
关键词
degenerate Bernoulli number; Bernoulli number; Stirling number;
D O I
10.1006/jnth.2001.2659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some identities involving Bernoulli and Stirling numbers, relation for two or three consecutive Bernoulli numbers, and various representations of Bernoulli numbers. (C) 2001 Academic Press.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 13 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[3]  
[Anonymous], 1983, COMBINATORIAL ENUMER
[4]  
[Anonymous], 1933, TOHOKU MATH J
[5]  
[Anonymous], 1994, FDN COMPUTER SCI
[6]  
CARLITZ L., 1956, Arch. Math. (Basel), V7, P28, DOI [10.1007/BF01900520, DOI 10.1007/BF01900520]
[7]  
Carlitz L., 1979, Util. Math., V15, P51
[8]   EXPLICIT FORMULAS FOR BERNOULLI NUMBERS [J].
GOULD, HW .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (01) :44-&
[9]   Explicit formulas for degenerate Bernoulli numbers [J].
Howard, FT .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :175-185
[10]  
IWASAWA K, 1972, ANN MATH STAD, V74