Binary THz modulator based on silicon Schottky-metasurface

被引:4
作者
Ahadi, Saeedeh [1 ]
Neshat, Mohammad [2 ]
Moravvej-Farshi, Mohammad Kazem [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect & Comp Engn, Nano Plasmo Photon Res Grp, POB 14115-194, Tehran 1411713116, Iran
[2] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 1439957131, Iran
关键词
ELECTRON-BEAM LITHOGRAPHY; FREQUENCY-SELECTIVE SURFACES; POLARIZATION CONVERSION; TERAHERTZ MODULATION; METAMATERIALS; EMISSION;
D O I
10.1038/s41598-022-23534-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a metasurface THz modulator based on split-ring resonators (SRRs) formed by four interconnected horizontal Si-Au Schottky diodes. The equivalent junction capacitance of each SRR in the proposed modulator is much smaller than that of the previously reported metasurface counterparts with vertical Schottky junctions, leading to a higher modulation speed. To modulate a THz incident signal by the proposed metasurface, we vary the bias voltage externally applied to the Schottky junctions. Applying a reverse bias of V-A = - 5 V to the Au gate, two LC resonances at 0.48 THz, and 0.95 THz are excited in the metasurface. Switching the applied voltage to V-A = + 0.49 V, we diminish the oscillator strengths of the LC resonances, creating one dipole resonance at 0.73 THz in the transmission spectrum of the metasurface modulator. The modulation depths at these resonances are more than 45%, reaching 87% at 0.95 THz. The phase modulation for this THz modulator is about 1.12 rad at 0.86 THz. Furthermore, due to the particular design of the meta-atoms, the modulation speed of this device is estimated up to approximately several hundred GHz, which makes this device an appropriate candidate for high-speed applications in wireless communications systems based on external modulators.
引用
收藏
页数:10
相关论文
共 67 条
  • [61] Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface
    Zhang, Yaxin
    Zhao, Yuncheng
    Liang, Shixiong
    Zhang, Bo
    Wang, Lan
    Zhou, Tianchi
    Kou, Wei
    Lan, Feng
    Zeng, Hongxin
    Han, Jiaguang
    Feng, Zhihong
    Chen, Qin
    Mazumder, Pinaki
    Yang, Ziqiang
    [J]. NANOPHOTONICS, 2019, 8 (01) : 153 - 170
  • [62] Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure
    Zhang, Yaxin
    Qiao, Shen
    Lang, Shixiong
    Wu, Zhenhua
    Yang, Ziqiang
    Feng, Zhihong
    Sun, Han
    Zhou, Yucong
    Sun, Linlin
    Chen, Zhi
    Zou, Xianbing
    Zhang, Bo
    Hu, Jianhao
    Li, Shaoqian
    Chen, Qin
    Li, Ling
    Xu, Gaiqi
    Zhao, Yuncheng
    Liu, Shenggang
    [J]. NANO LETTERS, 2015, 15 (05) : 3501 - 3506
  • [63] Electromechanically tunable metasurface transmission waveplate at terahertz frequencies
    Zhao, Xiaoguang
    Schalch, Jacob
    Zhang, Jingdi
    Seren, Huseyin R.
    Duan, Guangwu
    Averitt, Richard D.
    Zhang, Xin
    [J]. OPTICA, 2018, 5 (03): : 303 - 310
  • [64] High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface
    Zhao, Yuncheng
    Wang, Lan
    Zhang, Yaxin
    Qiao, Shen
    Liang, Shixiong
    Zhou, Tianchi
    Zhang, Xilin
    Guo, Xiaoqing
    Feng, Zhihong
    Lan, Feng
    Chen, Zhi
    Yang, Xiaobo
    Yang, Ziqiang
    [J]. NANO LETTERS, 2019, 19 (11) : 7588 - 7597
  • [65] Magnetic and electric excitations in split ring resonators
    Zhou, Jiangfeng
    Koschny, Thomas
    Soukoulis, Costas M.
    [J]. OPTICS EXPRESS, 2007, 15 (26): : 17881 - 17890
  • [66] Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices
    Zhou, Junhu
    Hu, Yuze
    Jiang, Tian
    Ouyang, Hao
    Li, Han
    Sui, Yizhen
    Hao, Hao
    You, Jie
    Zheng, Xin
    Xu, Zhongjie
    Cheng, Xiang'ai
    [J]. PHOTONICS RESEARCH, 2019, 7 (09) : 994 - 1002
  • [67] High performance metamaterials-high electron mobility transistors integrated terahertz modulator
    Zhou, Zhen
    Wang, Siqi
    Yu, Yue
    Chen, Yongli
    Feng, Lishuang
    [J]. OPTICS EXPRESS, 2017, 25 (15): : 17832 - 17840