An Evaluation of the Advanced Dvorak Technique (9.0) for the tropical cyclones over the North Indian Ocean

被引:5
|
作者
Ahmed, Rizwan [1 ,2 ]
Mohapatra, M. [2 ]
Giri, Ram Kumar [2 ]
Dwivedi, Suneet [1 ]
机构
[1] Univ Allahabad, K Banerjee Ctr Atmospher & Ocean Studies KBCAOS, Allahabad, UP, India
[2] Minist Earth Sci New Delhi, India Meteorol Dept, New Delhi, India
关键词
Tropical cyclone; Advanced Dvorak Technique (ADT); Intensity; Arabian sea and Bay of Bengal; OBJECTIVE SCHEME; TECHNIQUE ADT; INTENSITY;
D O I
10.1016/j.tcrr.2021.11.003
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Advanced Dvorak Technique (ADT) is used by tropical cyclone prediction centres around the world to accurately evaluate the intensity of tropical cyclones (TCs) from meteorological operational satellites. The algorithm development team has introduced new improvements to the objective ADT to further extend its capabilities and accuracy. A study has therefore undergone to evaluate the new edition of ADT (9.0) based on all the North Indian Ocean Tropical cyclones during 2018, 2019 and 2020 (Total 15 No.). It is found that ADT (9.0) performed well with the conformity of IMD's best track T. No estimates. ADT is reasonably good in estimating the intensity for T >= 4.0 (VSCS to SuCS) and overestimate the intensity for T <= 3.5(CS/SCS). (c) 2021 The Shanghai Typhoon Institute of China Meteorological Administration. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] Convection-Permitting WRF Simulations of Tropical Cyclones Over the North Indian Ocean
    P. Reshmi Mohan
    C. Venkata Srinivas
    B. Venkatraman
    Pure and Applied Geophysics, 2022, 179 : 1333 - 1363
  • [22] Impact of background error statistics on forecasting of tropical cyclones over the north Indian Ocean
    Rakesh, V.
    Goswami, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [23] Frequency of genesis and landfall of different categories of tropical cyclones over the North Indian Ocean
    Mohapatra, Mrutyunjay
    Sharma, Monica
    Devi, Sunitha S.
    Kumar, S. V. J.
    Sabade, Bharati S.
    MAUSAM, 2021, 72 (01): : 1 - 26
  • [24] On occurrence of rapid intensification and rainfall changes in tropical cyclones over the North Indian Ocean
    Vinodhkumar, Buri
    Busireddy, Nanda Kishore Reddy
    Ankur, Kumar
    Nadimpalli, Raghu
    Osuri, Krishna Kishore
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (02) : 714 - 726
  • [25] A New Approach to Improve the Track Prediction of Tropical Cyclones Over North Indian Ocean
    Ganesh, S. Saranya
    Sahai, A. K.
    Abhilash, S.
    Joseph, S.
    Dey, A.
    Mandal, R.
    Chattopadhyay, R.
    Phani, R.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (15) : 7781 - 7789
  • [26] Understanding the characteristics of rapid intensity changes of Tropical Cyclones over North Indian Ocean
    Nadimpalli, Raghu
    Mohanty, Shyama
    Pathak, Nishant
    Osuri, Krishna K.
    Mohanty, U. C.
    Chatterjee, Somoshree
    SN APPLIED SCIENCES, 2021, 3 (01):
  • [27] Evaluation of Track and Intensity Prediction of Tropical Cyclones Over North Indian Ocean Using NCUM Global Model
    Ashish Routray
    Devajyoti Dutta
    John P. George
    Pure and Applied Geophysics, 2019, 176 : 421 - 440
  • [28] Evaluation of Track and Intensity Prediction of Tropical Cyclones Over North Indian Ocean Using NCUM Global Model
    Routray, Ashish
    Dutta, Devajyoti
    George, John P.
    PURE AND APPLIED GEOPHYSICS, 2019, 176 (01) : 421 - 440
  • [29] Helicity evolution during the life cycle of tropical cyclones formed over the north Indian Ocean
    Munsi, A.
    Kesarkar, A. P.
    Bhate, J. N.
    Rajasree, V. P. M.
    Kutty, G.
    ADVANCES IN SPACE RESEARCH, 2023, 71 (03) : 1473 - 1485
  • [30] Predictability of landfall location and surge height of tropical cyclones over North Indian Ocean (NIO)
    Chaudhuri, Sutapa
    Goswami, Sayantika
    Middey, Anirban
    Das, Debanjana
    Chowdhury, S.
    NATURAL HAZARDS, 2015, 75 (02) : 1369 - 1388