Memetic Algorithm with Adaptive Local Search Depth for Large Scale Global Optimization

被引:0
|
作者
Liu, Can [1 ]
Li, Bin [2 ]
机构
[1] Univ Sci & Technol China, Nat Inspired Computat & Applicat Lab, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab, Hefei 230026, Peoples R China
来源
2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2014年
关键词
Memetic algorithms; Local Search Depth; Differential Search Algorithm; Solis and Wets' Algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Memetic algorithms (MAs) have been recognized as an effective algorithm framework for solving optimization problems. However, the exiting work mainly focused on the improvement for search operators. Local Search Depth (LSD) is a crucial parameter in MAs, which controls the computing resources assigned for local search. In this paper, an Adaptive Local Search Depth (ALSD) strategy is proposed to arrange the computing resources for local search according to its performance dynamically. A Memetic Algorithm with ALSD (MA-ALSD) is presented, its performance and the effectiveness of ALSD are testified via experiments on the LSGO test suite issued in CEC'2012.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 31 条
  • [1] Iterated local search with Powell's method: A memetic algorithm for continuous global optimization
    Kramer O.
    Memetic Computing, 2010, 2 (1) : 69 - 83
  • [2] A Memetic Chaotic Gravitational Search Algorithm for unconstrained global optimization problems
    Garcia-Rodenas, Ricardo
    Jimenez Linares, Luis
    Alberto Lopez-Gomez, Julio
    APPLIED SOFT COMPUTING, 2019, 79 : 14 - 29
  • [3] Adaptive Memetic Particle Swarm Optimization with Variable Local Search Pool Size
    Voglis, Costas
    Hadjidoukas, Panagiotis E.
    Parsopoulos, Konstantinos E.
    Papageorgiou, Dimitrios G.
    Lagaris, Isaac E.
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 113 - 120
  • [4] Analysis on the Collaboration Between Global Search and Local Search in Memetic Computation
    Lin, Jih-Yiing
    Chen, Ying-Ping
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (05) : 608 - 623
  • [5] Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria
    Wanner, Elizabeth F.
    Guimaraes, Frederico G.
    Takahashi, Ricardo H. C.
    Fleming, Peter J.
    EVOLUTIONARY COMPUTATION, 2008, 16 (02) : 185 - 224
  • [6] Adaptive differential search algorithm with multi-strategies for global optimization problems
    Chu, Xianghua
    Gao, Da
    Chen, Jiansheng
    Cui, Jianshuang
    Cui, Can
    Xu, Su Xiu
    Qin, Quande
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12) : 8423 - 8440
  • [7] A PSO and pattern search based memetic algorithm for SVMs parameters optimization
    Bao, Yukun
    Hu, Zhongyi
    Xiong, Tao
    NEUROCOMPUTING, 2013, 117 : 98 - 106
  • [8] Adaptive differential search algorithm with multi-strategies for global optimization problems
    Xianghua Chu
    Da Gao
    Jiansheng Chen
    Jianshuang Cui
    Can Cui
    Su Xiu Xu
    Quande Qin
    Neural Computing and Applications, 2019, 31 : 8423 - 8440
  • [9] Individual-Based Cooperative Coevolution Local Search for Large Scale Optimization
    Liu, Can
    Li, Bin
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 535 - 547
  • [10] A framework for memetic optimization using variable global and local surrogate models
    Yoel Tenne
    S. W. Armfield
    Soft Computing, 2009, 13 : 781 - 793