Theoretical systems of triboelectric nanogenerators

被引:877
|
作者
Niu, Simiao [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
关键词
Mechanical energy harvesting; Triboelectric nanogenerator; V-Q-x relationship; Electrostatics; ENERGY; OPTIMIZATION; PERFORMANCE; CONVERSION;
D O I
10.1016/j.nanoen.2014.11.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerator (TENG) technology based on contact electrification and electrostatic induction is an emerging new mechanical energy harvesting technology with numerous advantages. The current area power density of TENGs has reached 313 W/m(2) and their volume energy density has reached 490 kW/m(3). In this review, we systematically analyzed the theoretical system of triboelectric nanogenerators. Starting from the physics of TENGs, we thoroughly discussed their fundamental working principle and simulation method. Then the intrinsic output characteristics, load characteristics, and optimization strategy is in-depth discussed. TENGs have inherent capacitive behavior and their governing equation is their V-Q-x relationship. There are two capacitance formed between the tribo-charged dielectric surface and the two metal electrodes, respectively. The ratio of these two capacitances changes with the position of this dielectric surface, inducing electrons to transfer between the metal electrodes under short circuit conditions. This is the core working mechanism of triboelectric generators and different TENG fundamental modes can be classified based on the changing behavior of these two capacitances. Their first-order lumped-parameter equivalent circuit model is a voltage source in series with a capacitor. Their resistive load characteristics have a "three-working-region" behavior because of the impedance match mechanism. Besides, when TENGs are utilized to charge a capacitor with a bridge rectifier in multiple motion cycles, it is equivalent to utilizing a constant DC voltage source with an internal resistance to charge. The optimization techniques for all TENG fundamental modes are also discussed in detail. The theoretical system reviewed in this work provides a theoretical basis of TENGs and can be utilized as a guideline for TENG designers to continue improving TENG output performance. Published by Elsevier Ltd.
引用
收藏
页码:161 / 192
页数:32
相关论文
共 50 条
  • [31] Magnetic capsulate triboelectric nanogenerators
    Pengcheng Jiao
    Ali Matin Nazar
    King-James Idala Egbe
    Kaveh Barri
    Amir H. Alavi
    Scientific Reports, 12
  • [32] Leveraging triboelectric nanogenerators for bioengineering
    Zhang, Songlin
    Bick, Michael
    Xiao, Xiao
    Chen, Guorui
    Nashalian, Ardo
    Chen, Jun
    MATTER, 2021, 4 (03) : 845 - 887
  • [33] Native proteins for triboelectric nanogenerators
    Huang, Yuxuan
    Zheng, Haiyan
    Zhang, Jianquan
    Shen, Yue
    Xu, Xinrong
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (06) : 2578 - 2605
  • [34] Triboelectric nanogenerators for smart agriculture
    Dai, Shufen
    Li, Xunjia
    Jiang, Chengmei
    Ping, Jianfeng
    Ying, Yibin
    INFOMAT, 2023, 5 (02)
  • [35] Advances in Bioresorbable Triboelectric Nanogenerators
    Kang, Minki
    Lee, Dong-Min
    Rubab, Najaf
    Kim, So-Hee
    Hyun, Inah
    Kim, Sang-Woo
    CHEMICAL REVIEWS, 2023, 123 (19) : 11559 - 11618
  • [36] Application of Triboelectric Nanogenerators on Manipulators
    Xu, Zhongyang
    Zhang, Jiabin
    Huang, Junhan
    Wang, Zhongxian
    Shi, Yong
    IEEE ACCESS, 2023, 11 : 80151 - 80171
  • [37] Wearable Triboelectric Nanogenerators for Therapeutics
    Xiao, Xiao
    Chen, Guorui
    Libanori, Alberto
    Chen, Jun
    TRENDS IN CHEMISTRY, 2021, 3 (04): : 279 - 290
  • [38] Triboelectric Nanogenerators: State of the Art
    Shi, Zhan
    Zhang, Yanhu
    Gu, Jiawei
    Liu, Bao
    Fu, Hao
    Liang, Hongyu
    Ji, Jinghu
    SENSORS, 2024, 24 (13)
  • [39] Advances in Bioinspired Triboelectric Nanogenerators
    Mayer, Mylan
    Xiao, Xiao
    Yin, Junyi
    Chen, Guorui
    Xu, Jing
    Chen, Jun
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (12)
  • [40] Towards optimized triboelectric nanogenerators
    Dharmasena, R. D. I. G.
    Silva, S. R. P.
    NANO ENERGY, 2019, 62 : 530 - 549