A Modified Genetic Algorithm Based FCM Clustering Algorithm for Magnetic Resonance Image Segmentation

被引:4
作者
Das, Sunanda [1 ]
De, Sourav [2 ]
机构
[1] Univ Burdwan, Univ Inst Technol, Dept Comp Sci & Engn, Burdwan 713104, W Bengal, India
[2] Cooch Behar Govt Engn Coll, Dept Comp Sci & Engn, Cooch Behar, W Bengal, India
来源
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1 | 2017年 / 515卷
关键词
Segmentation; Clustering algorithm; Fuzzy C-Means algorithm; Genetic algorithm;
D O I
10.1007/978-981-10-3153-3_43
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we have devised modified genetic algorithm (MfGA) based fuzzy C-means algorithm, which segment magnetic resonance (MR) images. In FCM, local minimum point can be easily derived for not selecting the centroids correctly. The proposed MfGA improves the population initialization and crossover parts of GA and generate the optimized class levels of the multilevel MR images. After that, the derived optimized class levels are applied as the initial input in FCM. An extensive performance comparison of the proposed method with the conventional FCM on two MR images establishes the superiority of the proposed approach.
引用
收藏
页码:435 / 443
页数:9
相关论文
共 14 条
  • [1] Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    Basu, Dipak Kumar
    Nasipuri, Mita
    [J]. APPLIED SOFT COMPUTING, 2015, 34 : 758 - 769
  • [2] A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    Ahmed, MN
    Yamany, SM
    Mohamed, N
    Farag, AA
    Moriarty, T
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) : 193 - 199
  • [3] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms, DOI 10.1007/978-1-4757-0450-1_3
  • [4] Quantitative evaluation of color image segmentation results
    Borsotti, M
    Campadelli, P
    Schettini, R
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 741 - 747
  • [5] Fuzzy c-means clustering with spatial information for image segmentation
    Chuang, KS
    Tzeng, HL
    Chen, S
    Wu, J
    Chen, TJ
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) : 9 - 15
  • [6] Efficient grey-level image segmentation using an optimised MUSIG (OptiMUSIG) activation function
    De, Sourav
    Bhattacharyya, Siddhartha
    Dutta, Paramartha
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2011, 26 (01) : 1 - 39
  • [7] Clustering with a genetically optimized approach
    Hall, LO
    Özyurt, IB
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) : 103 - 112
  • [8] Jansi S, 2014, 2014 IEEE INT C COMP, P1
  • [9] Li LL, 2007, PROCEEDINGS OF THE 2007 1ST INTERNATIONAL SYMPOSIUM ON INFORMATION TECHNOLOGIES AND APPLICATIONS IN EDUCATION (ISITAE 2007), P88
  • [10] New methods for MRI denoising based on sparseness and self-similarity
    Manjon, Jose V.
    Coupe, Pierrick
    Buades, Antonio
    Collins, D. Louis
    Robles, Montserrat
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (01) : 18 - 27