Entanglement entropy and negativity of disjoint intervals in CFT: some numerical extrapolations

被引:60
作者
De Nobili, Cristiano [1 ]
Coser, Andrea
Tonni, Erik
机构
[1] SISSA, I-34136 Trieste, Italy
关键词
conformal field theory (theory); entanglement in extended quantum systems (theory); REDUCED DENSITY-MATRICES; FIELDS;
D O I
10.1088/1742-5468/2015/06/P06021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The entanglement entropy and the logarithmic negativity can be computed in quantum field theory through a method based on the replica limit. Performing these analytic continuations in some cases is beyond our current knowledge, even for simple models. We employ a numerical method based on rational interpolations to extrapolate the entanglement entropy of two disjoint intervals for the conformal field theories given by the free compact boson and the Ising model. The case of three disjoint intervals is studied for the Ising model and the non compact free massless boson. For the latter model, the logarithmic negativity of two disjoint intervals has been also considered. Some of our findings have been checked against existing numerical results obtained from the corresponding lattice models.
引用
收藏
页数:27
相关论文
共 97 条
[1]   Disk entanglement entropy for a Maxwell field [J].
Agon, Cesar A. ;
Headrick, Matthew ;
Jafferis, Daniel L. ;
Kasko, Skyler .
PHYSICAL REVIEW D, 2014, 89 (02)
[2]   Entanglement negativity and conformal field theory: a Monte Carlo study [J].
Alba, Vincenzo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[3]   Entanglement entropy of two disjoint intervals in c=1 theories [J].
Alba, Vincenzo ;
Tagliacozzo, Luca ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[4]   Entanglement entropy of two disjoint blocks in critical Ising models [J].
Alba, Vincenzo ;
Tagliacozzo, Luca ;
Calabrese, Pasquale .
PHYSICAL REVIEW B, 2010, 81 (06)
[5]   Entanglement of Low-Energy Excitations in Conformal Field Theory [J].
Alcaraz, Francisco Castilho ;
Ibanez Berganza, Miguel ;
Sierra, German .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[6]   THETA-FUNCTIONS, MODULAR INVARIANCE, AND STRINGS [J].
ALVAREZGAUME, L ;
MOORE, G ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :1-40
[7]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[8]   Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension [J].
Anders, S. ;
Plenio, M. B. ;
Duer, W. ;
Verstraete, F. ;
Briegel, H. -J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (10)
[9]  
[Anonymous], ARXIV14061161
[10]  
[Anonymous], ARXIV11095334