A generalized score confidence interval for a binomial proportion

被引:12
|
作者
Guan, Yu [1 ]
机构
[1] Zhejiang A&F Univ, Dept Stat, Linan 311300, Zhejiang, Peoples R China
关键词
Binomial distribution; Confidence interval; Score interval; Coverage probability; Mean absolute error; Average excepted length; Standard deviation;
D O I
10.1016/j.jspi.2011.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Constructing a confidence interval for a binomial proportion is one of the most basic problems in statistics. The score interval as well as the Wilson interval with some modified forms have been broadly investigated and suggested by many statisticians. In this paper, a generalized score interval Cl-G(a) is proposed by replacing the coefficient 1/4 in the score interval with parameter a. Based on analyzing and comparing various confidence intervals, we recommend the generalized score interval Cl-G(0.3) for the nominal confidence levels 0.90, 0.95 and 0.99, which improves the spike phenomenon of the score interval and behaves better and computes more easily than most of other approximate intervals such as the Agresti-Coull interval and the Jeffreys interval to estimate a binomial proportion. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 50 条
  • [1] A weighted score confidence interval for a binomial proportion
    Nawa, Victor Mooto
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (01) : 133 - 147
  • [2] A weighted score confidence interval for a binomial proportion
    Victor Mooto Nawa
    Japanese Journal of Statistics and Data Science, 2022, 5 : 133 - 147
  • [3] A generalized Agresti–Coull type confidence interval for a binomial proportion
    Junsik Kim
    Woncheol Jang
    Journal of the Korean Statistical Society, 2022, 51 : 356 - 377
  • [4] A generalized Agresti-Coull type confidence interval for a binomial proportion
    Kim, Junsik
    Jang, Woncheol
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 356 - 377
  • [6] USING ADJUSTED WALD CONFIDENCE INTERVAL FOR A BINOMIAL PROPORTION
    Almendra-Arao, Felix
    Reyes-Cervantes, Hortensia
    Morales-Cortes, Marcos
    del Rocio Reyes-Reyes, Maria
    Catherin Diaz-Arias, Marian
    JP JOURNAL OF BIOSTATISTICS, 2020, 17 (02) : 415 - 422
  • [7] An improved score interval with a modified midpoint for a binomial proportion
    Yu, Wei
    Guo, Xu
    Xu, Wangli
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (05) : 1022 - 1038
  • [8] Modified Clopper-Pearson Confidence Interval for Binomial Proportion
    Habtzghi, Desale
    Midha, Chand K.
    Das, Ashish
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2014, 13 (04): : 296 - 310
  • [9] Modified Clopper-Pearson Confidence Interval for Binomial Proportion
    Desale Habtzghi
    Chand K. Midha
    Ashish Das
    Journal of Statistical Theory and Applications, 2014, 13 (4): : 296 - 310
  • [10] Exact likelihood ratio and score confidence intervals for the binomial proportion
    Somerville, Matthew C.
    Brown, Rebekkah S.
    PHARMACEUTICAL STATISTICS, 2013, 12 (03) : 120 - 128