Acoustic analogues of three-dimensional topological insulators

被引:74
作者
He, Cheng [1 ,2 ,3 ]
Lai, Hua-Shan [1 ,2 ]
He, Bo [1 ,2 ]
Yu, Si-Yuan [1 ,2 ,3 ]
Xu, Xiangyuan [1 ,2 ]
Lu, Ming-Hui [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
STATES;
D O I
10.1038/s41467-020-16131-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators (TIs) can host an insulating gapped bulk with conducting gapless boundary states in lower dimensions than the bulk. To date, various kinds of classical wave TIs with gapless symmetry-protected boundary states have been discovered, promising for the efficient confinement and robust guiding of waves. However, for airborne sound, an acoustic analogue of a three-dimensional TI has not been achieved due to its spinless nature. Here, we experimentally demonstrate a three-dimensional topological acoustic crystal with pseudospins using bilayer chiral structures, in which multi-order topological bandgaps are generated step by step via elaborately manipulating the corresponding spatial symmetries. We observe acoustic analogues of 1st-order (two-dimensional gapless surface Dirac cones) and 2nd-order (one-dimensional gapless hinge Dirac dispersion) TIs in three dimensions, supporting robust surface or hinge sound transport. Based solely on spatial symmetry, our work provides a route to engineer the hierarchies of TIs and explore topological devices for three-dimensional spinless systems. An acoustic analogue of a three-dimensional topological insulator (TI) has not been achieved, despite various realizations in other kinds of TIs. Here, the authors report a three-dimensional multi-order TI in an acoustic bilayer chiral structure, with robust surface or hinge sound transport.
引用
收藏
页数:7
相关论文
共 52 条
  • [1] Berry-phase description of topological crystalline insulators
    Alexandradinata, A.
    Bernevig, B. Andrei
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [2] Alexandradinata A., 2019, CRYSTALLOGRAPHIC SPL
  • [3] Nonreciprocal lasing in topological cavities of arbitrary geometries
    Bahari, Babak
    Ndao, Abdoulaye
    Vallini, Felipe
    El Amili, Abdelkrim
    Fainman, Yeshaiahu
    Kante, Boubacar
    [J]. SCIENCE, 2017, 358 (6363) : 636 - 639
  • [4] Topological insulator laser: Experiments
    Bandres, Miguel A.
    Wittek, Steffen
    Harari, Gal
    Parto, Midya
    Ren, Jinhan
    Segev, Mordechai
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. SCIENCE, 2018, 359 (6381)
  • [5] A topological quantum optics interface
    Barik, Sabyasachi
    Karasahin, Aziz
    Flower, Christopher
    Cai, Tao
    Miyake, Hirokazu
    DeGottardi, Wade
    Hafezi, Mohammad
    Waks, Edo
    [J]. SCIENCE, 2018, 359 (6376) : 666 - 668
  • [6] Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators
    Benalcazar, Wladimir A.
    Bernevig, B. Andrei
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2017, 96 (24)
  • [7] Tutorial: Computing Topological Invariants in 2D Photonic Crystals
    Blanco de Paz, Maria
    Devescovi, Chiara
    Giedke, Geza
    Jose Saenz, Juan
    Vergniory, Maia G.
    Bradlyn, Barry
    Bercioux, Dario
    Garcia-Etxarri, Aitzol
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
  • [8] Experimental realization of on-chip topological nanoelectromechanical metamaterials
    Cha, Jinwoong
    Kim, Kun Woo
    Daraio, Chiara
    [J]. NATURE, 2018, 564 (7735) : 229 - +
  • [9] Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]
  • [10] Topological insulators in three dimensions
    Fu, Liang
    Kane, C. L.
    Mele, E. J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (10)