Acoustic analogues of three-dimensional topological insulators

被引:83
作者
He, Cheng [1 ,2 ,3 ]
Lai, Hua-Shan [1 ,2 ]
He, Bo [1 ,2 ]
Yu, Si-Yuan [1 ,2 ,3 ]
Xu, Xiangyuan [1 ,2 ]
Lu, Ming-Hui [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
STATES;
D O I
10.1038/s41467-020-16131-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators (TIs) can host an insulating gapped bulk with conducting gapless boundary states in lower dimensions than the bulk. To date, various kinds of classical wave TIs with gapless symmetry-protected boundary states have been discovered, promising for the efficient confinement and robust guiding of waves. However, for airborne sound, an acoustic analogue of a three-dimensional TI has not been achieved due to its spinless nature. Here, we experimentally demonstrate a three-dimensional topological acoustic crystal with pseudospins using bilayer chiral structures, in which multi-order topological bandgaps are generated step by step via elaborately manipulating the corresponding spatial symmetries. We observe acoustic analogues of 1st-order (two-dimensional gapless surface Dirac cones) and 2nd-order (one-dimensional gapless hinge Dirac dispersion) TIs in three dimensions, supporting robust surface or hinge sound transport. Based solely on spatial symmetry, our work provides a route to engineer the hierarchies of TIs and explore topological devices for three-dimensional spinless systems. An acoustic analogue of a three-dimensional topological insulator (TI) has not been achieved, despite various realizations in other kinds of TIs. Here, the authors report a three-dimensional multi-order TI in an acoustic bilayer chiral structure, with robust surface or hinge sound transport.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Berry-phase description of topological crystalline insulators [J].
Alexandradinata, A. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2016, 93 (20)
[2]  
Alexandradinata A., 2019, CRYSTALLOGRAPHIC SPL
[3]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[4]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[5]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[6]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[7]   Tutorial: Computing Topological Invariants in 2D Photonic Crystals [J].
Blanco de Paz, Maria ;
Devescovi, Chiara ;
Giedke, Geza ;
Jose Saenz, Juan ;
Vergniory, Maia G. ;
Bradlyn, Barry ;
Bercioux, Dario ;
Garcia-Etxarri, Aitzol .
ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
[8]   Experimental realization of on-chip topological nanoelectromechanical metamaterials [J].
Cha, Jinwoong ;
Kim, Kun Woo ;
Daraio, Chiara .
NATURE, 2018, 564 (7735) :229-+
[9]  
Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]
[10]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)