Cuntz semigroups of ultraproduct C*-algebras

被引:13
作者
Antoine, Ramon [1 ,2 ]
Perera, Francesc [1 ,2 ]
Thiel, Hannes [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[2] Barcelona Grad Sch Math BGSMath, Barcelona, Spain
[3] Univ Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2020年 / 102卷 / 03期
关键词
06B35; 06F05; 46L05; 46M07 (primary); 03C20; 06B30; 18A30; 18A35; 18B35; 19K14; 46M15; 46M40 (secondary); NUCLEAR; CLASSIFICATION; INVARIANT; STABILITY;
D O I
10.1112/jlms.12343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the category of abstract Cuntz semigroups is bicomplete. As a consequence, the category admits products and ultraproducts. We further show that the scaled Cuntz semigroup of the (ultra)product of a family of C*-algebras agrees with the (ultra)product of the scaled Cuntz semigroups of the involved C*-algebras. As applications of our results, we compute the non-stable K-Theory of general (ultra)products of C*-algebras and we characterize when ultraproducts are simple. We also give criteria that determine order properties of these objects, such as almost unperforation.
引用
收藏
页码:994 / 1029
页数:36
相关论文
共 33 条
[1]   Abstract bivariant Cuntz semigroups II [J].
Antoine, Ramon ;
Perera, Francesc ;
Thiel, Hannes .
FORUM MATHEMATICUM, 2020, 32 (01) :45-62
[2]   Abstract Bivariant Cuntz Semigroups [J].
Antoine, Ramon ;
Perera, Francesc ;
Thiel, Hannes .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (17) :5342-5386
[3]   Tensor Products and Regularity Properties of Cuntz Semigroups [J].
Antoine, Ramon ;
Perera, Francesc ;
Thiel, Hannes .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 251 (1199) :1-+
[4]  
Antoine R, 2014, T AM MATH SOC, V366, P2907
[5]   Pullbacks, C(X)-algebras, and their Cuntz semigroup [J].
Antoine, Ramon ;
Perera, Francesc ;
Santiago, Luis .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (10) :2844-2880
[6]  
Blackadar B., 2006, OPERATOR ALGEBRAS TH
[7]  
Borceux F., 1994, HDB CATEGORICAL ALGE, V50
[8]   Covering Dimension of C*-Algebras and 2-Coloured Classification [J].
Bosa, Joan ;
Brown, Nathanial P. ;
Sato, Yasuhiko ;
Tikuisis, Aaron ;
White, Stuart ;
Winter, Wilhelm .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 257 (1233) :1-+
[9]   Isomorphism of Hilbert modules over stably finite C*-algebras [J].
Brown, Nathanial P. ;
Ciuperca, Alin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (01) :332-339
[10]  
Ciuperca A, 2010, J OPERAT THEOR, V64, P155