Genome-Scale Metabolic Network Reconstruction and In Silico Analysis of Hexanoic acid Producing Megasphaera elsdenii

被引:18
|
作者
Lee, Na-Rae [1 ,2 ]
Lee, Choong Hwan [1 ]
Lee, Dong-Yup [3 ]
Park, Jin-Byung [2 ]
机构
[1] Konkuk Univ, Dept Biosci & Biotechnol, Seoul 05029, South Korea
[2] Ewha Womans Univ, Dept Food Sci & Engn, Seoul 03760, South Korea
[3] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Megasphaera elsdenii; hexanoic acid; bifurcated pathway; genome-scale metabolic model; constraint-based modeling; RUMINAL BACTERIUM; FATTY-ACID; FERMENTATION; LACTATE; GROWTH; GLUCOSE;
D O I
10.3390/microorganisms8040539
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hexanoic acid and its derivatives have been recently recognized as value-added materials and can be synthesized by several microbes. Of them, Megasphaera elsdenii has been considered as an interesting hexanoic acid producer because of its capability to utilize a variety of carbons sources. However, the cellular metabolism and physiology of M. elsdenii still remain uncharacterized. Therefore, in order to better understand hexanoic acid synthetic metabolism in M. elsdenii, we newly reconstructed its genome-scale metabolic model, iME375, which accounts for 375 genes, 521 reactions, and 443 metabolites. A constraint-based analysis was then employed to evaluate cell growth under various conditions. Subsequently, a flux ratio analysis was conducted to understand the mechanism of bifurcated hexanoic acid synthetic pathways, including the typical fatty acid synthetic pathway via acetyl-CoA and the TCA cycle in a counterclockwise direction through succinate. The resultant metabolic states showed that the highest hexanoic acid production could be achieved when the balanced fractional contribution via acetyl-CoA and succinate in reductive TCA cycle was formed in various cell growth rates. The highest hexanoic acid production was maintained in the most perturbed flux ratio, as phosphoenolpyruvate carboxykinase (pck) enables the bifurcated pathway to form consistent fluxes. Finally, organic acid consuming simulations suggested that succinate can increase both biomass formation and hexanoic acid production.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Improving ribonucleic acid production in Saccharomyces pastorianus via in silico genome-scale metabolic network model
    Chen, Hao
    Li, Qi
    Wang, Jinjing
    Niu, Chengtuo
    Zheng, Feiyun
    Liu, Chunfeng
    BIOTECHNOLOGY JOURNAL, 2023, 18 (11)
  • [32] Reconstruction and analysis of a genome-scale metabolic model for Agrobacterium tumefaciens
    Xu, Nan
    Yang, Qiyuan
    Yang, Xiaojing
    Wang, Mingqi
    Guo, Minliang
    MOLECULAR PLANT PATHOLOGY, 2021, 22 (03) : 348 - 360
  • [33] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    Bernstein, David B.
    Sulheim, Snorre
    Almaas, Eivind
    Segre, Daniel
    GENOME BIOLOGY, 2021, 22 (01)
  • [34] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balagurunathan, Balaji
    Jonnalagadda, Sudhakar
    Tan, Lily
    Srinivasan, Rajagopalan
    MICROBIAL CELL FACTORIES, 2012, 11
  • [35] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Simonas Marcišauskas
    Boyang Ji
    Jens Nielsen
    BMC Bioinformatics, 20
  • [36] Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana
    Shah, Ab Rauf
    Ahmad, Ahmad
    Srivastava, Shireesh
    Ali, B. M. Jaffar
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 26 : 354 - 364
  • [37] Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    Montagud, Arnau
    Navarro, Emilio
    Fernandez de Cordoba, Pedro
    Urchueguia, Javier F.
    Patil, Kiran Raosaheb
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [38] Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501
    Babaei, Parizad
    Marashi, Sayed-Amir
    Asad, Sedigheh
    MOLECULAR BIOSYSTEMS, 2015, 11 (11) : 3022 - 3032
  • [39] Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies
    Aggarwal, Shilpi
    Karimi, I. A.
    Lee, Dong Yup
    MOLECULAR BIOSYSTEMS, 2011, 7 (11) : 3122 - 3131
  • [40] Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001
    Navid, Ali
    Almaas, Eivind
    MOLECULAR BIOSYSTEMS, 2009, 5 (04) : 368 - 375