Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation

被引:159
作者
Scalas, E
Gorenflo, R
Mainardi, F
机构
[1] E Piedmont Univ, Dept Adv Sci & Technol, I-15100 Alessandria, Italy
[2] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[3] Univ Bologna, Dept Phys, I-40126 Bologna, Italy
[4] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A detailed study is presented for a large class of uncoupled continuous-time random walks. The master equation is solved for the Mittag-Leffler survival probability. The properly scaled diffusive limit of the master equation is taken and its relation with the fractional diffusion equation is discussed. Finally, some common objections found in the literature are thoroughly reviewed.
引用
收藏
页数:8
相关论文
共 66 条
[1]  
[Anonymous], POINT PROCESSES
[2]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[3]  
Balescu R., 1997, STAT DYNAMICS MATTER
[4]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[5]   CTRW pathways to the fractional diffusion equation [J].
Barkai, E .
CHEMICAL PHYSICS, 2002, 284 (1-2) :13-27
[6]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[7]  
Ben-Avraham D., 2000, DIFFUSION REACTIONS
[8]  
Bingham N. H., 1987, Regular Variation
[9]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[10]  
Cox D. R., 1967, RENEWAL THEORY