A Single-Use Paper-Shaped Microbial Fuel Cell for Rapid Aqueous Biosensing

被引:17
作者
Zuo, Kuichang [1 ,2 ]
Liu, Han [2 ]
Zhang, Qiaoying [2 ]
Liang, Peng [1 ]
Huang, Xia [1 ]
Vecitis, Chad D. [2 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
biosensing; microbial fuel cells; separator; silver; single-use; OXYGEN REDUCTION; SCALING-UP; COMMUNITIES; PERFORMANCE; ELECTRICITY; MEMBRANES; ELECTRODE; PLATINUM; CATALYST; BATTERY;
D O I
10.1002/cssc.201500258
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The traditional chamber-based microbial fuel cell (MFC) often has the disadvantages of high ohmic resistance, large volume requirements, and delayed start-up. In this study, paper-shaped MFCs utilizing a porous carbon anode, a solid Ag2O-coated carbon cathode, and a micrometer-thin porous polyvinylidene fluoride (PVDF) separator are investigated to address the classical MFC issues. The Ag2O-coated cathode has a low overpotential of 0.06V at a reducing current of 1mA compared to a Pt-air cathode. Rapid inoculation by filtration results in an instantaneous power density of 92mWm(-2) with an internal resistance of 162. Integrated current over the first 30min of operation has a linear relation with microbial concentration.
引用
收藏
页码:2035 / 2040
页数:6
相关论文
共 28 条
[1]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[2]   Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor [J].
Chang, IS ;
Jang, JK ;
Gil, GC ;
Kim, M ;
Kim, HJ ;
Cho, BW ;
Kim, BH .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (06) :607-613
[3]   Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (07) :2426-2432
[4]  
Cusick RD, 2012, SCIENCE, V335, P1474, DOI [10.1126/science.1219330, 10.1126/science.1218781]
[5]   Cost-effective tubular cordierite micro-filtration membranes processed by co-sintering [J].
Dong, Yingchao ;
Lin, Bin ;
Wang, Songlin ;
Xie, Kui ;
Fang, Daru ;
Zhang, Xiaozhen ;
Ding, Hanping ;
Liu, Xingqin ;
Meng, Guangyao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) :L35-L40
[6]   A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices [J].
Fraiwan, Arwa ;
Mukherjee, Sayantika ;
Sundermier, Steven ;
Lee, Hyung-Sool ;
Choi, Seokheun .
BIOSENSORS & BIOELECTRONICS, 2013, 49 :410-414
[7]   Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells [J].
Freguia, Stefano ;
Rabaey, Korneel ;
Yuan, Zhiguo ;
Keller, Jurg .
ELECTROCHIMICA ACTA, 2007, 53 (02) :598-603
[8]   A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell [J].
Gong, Xiao-Bo ;
You, Shi-Jie ;
Wang, Xiu-Heng ;
Zhang, Jin-Na ;
Gan, Yang ;
Ren, Nan-Qi .
BIOSENSORS & BIOELECTRONICS, 2014, 55 :237-241
[9]   Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J].
Holmes, DE ;
Bond, DR ;
O'Neill, RA ;
Reimers, CE ;
Tender, LR ;
Lovley, DR .
MICROBIAL ECOLOGY, 2004, 48 (02) :178-190
[10]   Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor [J].
Kaur, Amandeep ;
Ibrahim, Saad ;
Pickett, Christopher J. ;
Michie, Iain S. ;
Dinsdale, Richard M. ;
Guwy, Alan J. ;
Premier, Giuliano C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 201 :266-273