OPTIMAL FEEDBACK CONTROL FOR A CLASS OF SECOND-ORDER EVOLUTION DIFFERENTIAL INCLUSIONS WITH CLARKE'S SUBDIFFERENTIAL

被引:17
作者
Chen, Jun [1 ]
Liu, Zhenhai [1 ,2 ]
Lomovtsev, Fiodar E. [3 ]
Obukhovskii, Vakeri [4 ]
机构
[1] Guangxi Minzu Univ, Guangxi Coll & Univ, Key Lab Optimizat Control & Engn Calculat, Nanning 530006, Peoples R China
[2] Yulin Normal Univ, Guangxi Coll & Univ, Key Lab Complex Syst Optimizat & Big Data Proc, Yulin 537000, Peoples R China
[3] Belarusian State Univ, Fac Mech & Math, Dept Math Cybernet, Minsk, BELARUS
[4] Voronezh State Pedag Univ, Fac Phys & Math, Voronezh 394043, Russia
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2022年 / 6卷 / 05期
关键词
Clarke?s subdifferential; Feedback control; Feasible pair; Optimal control; Second order evolution inclusion; DIRECTIONAL-DERIVATIVES; CONTROL-SYSTEMS; CONTROLLABILITY; EXISTENCE; VIBRATIONS;
D O I
10.23952/jnva.6.2022.5.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study optimal feedback control for a class of non-autonomous second-order evolution inclusions with Clarke's subdifferential in a separable reflexive Banach space. We only assume that the second order evolution operator involved satisfies the strong continuity condition instead of the compactness, which was used in previous literature. By using the properties of multimaps and Clarke's subdifferential, we assume some sufficient conditions to ensure the existence of feasible pairs of the feedback control systems. Furthermore, we also prove the existence of optimal control pairs.
引用
收藏
页码:551 / 565
页数:15
相关论文
共 36 条
[1]  
[Anonymous], 1997, Handbook of multivalued analysis, I: theory, DOI 10.1007/978-1-4615-6359-4
[2]  
[Anonymous], 1995, Universitatis Iagellonicae Acta Mathematica
[3]  
[Anonymous], 1995, Systems Control: Foundations Applications
[4]   Controllability for systems governed by semilinear evolution inclusions without compactness [J].
Benedetti, Irene ;
Obukhovskii, Valeri ;
Taddei, Valentina .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (06) :795-812
[5]   Linear functionals on certain spaces of abstractly-valued functions [J].
Bochner, S ;
Taylor, AE .
ANNALS OF MATHEMATICS, 1938, 39 :913-944
[6]  
Brezis H, 2011, UNIVERSITEXT, P1
[7]  
Cardinali T, 2017, STUD UNIV BABES-BOLY, V62, P101, DOI 10.24193/subbmath.2017.0008
[8]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[9]  
Franklin G. F., 2002, Feedback Control of Dynamic Systems
[10]   Optimal control of feedback control systems governed by hemivariational inequalities [J].
Huang, Yong ;
Liu, Zhenhai ;
Zeng, Biao .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) :2125-2136