The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials

被引:86
作者
Zhang, MR [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2001年 / 64卷
基金
中国国家自然科学基金;
关键词
D O I
10.1017/S0024610701002277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic potential. After a rotation number function p(lambda) has been introduced, it is proved that for any non-negative integer n, the endpoints of the interval p(-1)(n/2) in R yield the corresponding periodic or anti-periodic eigenvalues, However, as in the Dirichlet problem of the higher dimensional p-Laplacian, it remains open if these eigenvalues represent all periodic and anti-periodic eigenvalues. The result obtained is a partial generalization of the spectrum theory of the one-dimensional Schrodinger operators with periodic potentials.
引用
收藏
页码:125 / 143
页数:19
相关论文
共 25 条
[1]  
ANANE A, 1996, NONLINEAR PARTIAL DI, P1
[2]  
[Anonymous], 1969, ORDINARY DIFERENTIAL
[3]  
[Anonymous], 1966, HILLS EQUATIONS
[4]   On the Fredholm alternative for the p-Laplacian [J].
Binding, PA ;
Drabek, P ;
Huang, YX .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3555-3559
[5]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[6]   Nonresonance to the right of the first eigenvalue for the one-dimensional p-Laplacian [J].
Cuesta, M ;
Gossez, JP ;
Omari, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (04) :481-496
[7]   The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian [J].
del Pino, M ;
Drábek, P ;
Manásevich, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :386-419
[8]   Resonance problems for the one-dimensional p-Laplacian [J].
Drábek, P ;
Robinson, SB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) :755-765
[9]   Resonance problems for the p-Laplacian [J].
Drábek, P ;
Robinson, SB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :189-200
[10]   A counterexample to the Fredholm alternative for the p-Laplacian [J].
Drábek, P ;
Takác, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1079-1087