Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls

被引:57
作者
Duperron, Sebastien [1 ]
Laurent, Melina C. Z. [2 ]
Gaill, Francoise [1 ]
Gros, Olivier [2 ]
机构
[1] Univ Paris 06, CNRS, UMR 7138 UPMC IRD MNHN, Paris, France
[2] Univ Antilles Guyane, UMR 7138 Syst Adaptat Evolut, Guadeloupe, France
关键词
sulphur-oxidizing bacteria; Bathymodiolus; Idas; Adipicola; sunken woods; Bohol sea;
D O I
10.1111/j.1574-6941.2008.00438.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Six morphotypes of small mussels (Bivalvia: Mytilidae) were found attached to naturally sunken wood collected in the Bohol Sea (Philippines). These specimens are related to the large Bathymodiolus mussels that are found worldwide at cold seeps and hydrothermal vents. In these habitats, the mytilids harbour sulphur- and methane-oxidizing endosymbionts in their gills and depend on the energy and carbon provided by the symbionts. In this study, bacteria associated with the gills of wood-associated mussels are characterized using molecular and microscopic techniques. The existence of bacteria in the lateral zone of gill filaments in all specimens is demonstrated. Comparative analyses of 16S rRNA gene and adenosine 5'-phosphosulphate (APS) reductase gene sequences indicate that the bacteria are closely related to sulphur-oxidizing endosymbionts of Bathymodiolus. FISHs using specific probes confirm that sulphur oxidizers are by far the most abundant, if not the only bacteria present. Electron micrographs displayed mostly extracellular bacteria located between microvilli at the apical surface of host gill epithelial cells all along the lateral zone of each gill filament. In some specimens, occasional occurrence of intracellular bacteria with similar morphology was noted. This study provides the first molecular evidence for the presence of possible thiotrophic symbiosis in sunken wood ecosystems. With their epibiotic bacteria, wood-associated mussels display a less integrated type of interaction than described in their seep, vent and whale fall relatives.
引用
收藏
页码:338 / 349
页数:12
相关论文
共 47 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[3]   High species richness in deep-sea chemoautotrophic whale skeleton communities [J].
Baco, AR ;
Smith, CR .
MARINE ECOLOGY PROGRESS SERIES, 2003, 260 :109-114
[4]   Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5′-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (Oligochaeta) from Bermuda and the Bahamas [J].
Blazejak, Anna ;
Kuever, Jan ;
Erseus, Christer ;
Amann, Rudolf ;
Dubilier, Nicole .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (08) :5527-5536
[5]   SYMBIOSIS OF METHYLOTROPHIC BACTERIA AND DEEP-SEA MUSSELS [J].
CAVANAUGH, CM ;
LEVERING, PR ;
MAKI, JS ;
MITCHELL, R ;
LIDSTROM, ME .
NATURE, 1987, 325 (6102) :346-348
[6]  
CAVANAUGH CM, 2005, PROKARYOTES EVOLVING
[7]  
Colaço A, 2002, CAH BIOL MAR, V43, P259
[8]  
DeChaine E. G., 2005, MOL BASIS SYMBIOSIS, P227
[9]  
Deming JW, 1997, MICROSC RES TECHNIQ, V37, P162, DOI 10.1002/(SICI)1097-0029(19970415)37:2<162::AID-JEMT4>3.0.CO
[10]  
2-Q