Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

被引:59
|
作者
Huang, Yu [1 ,3 ]
Guo, Feng [2 ]
Li, Yongling [1 ]
Liu, Yufeng [3 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Engn, Dept Cognit Sci, Xiamen, Peoples R China
[3] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
IDENTIFICATION; ATTRACTORS; DYNAMICS;
D O I
10.1371/journal.pone.0114910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter estimation for fractional-order chaotic systems is an important issue in fractionalorder chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms
    D. A. Yousri
    Amr M. AbdelAty
    Lobna A. Said
    A. S. Elwakil
    Brent Maundy
    Ahmed G. Radwan
    Nonlinear Dynamics, 2019, 95 : 2491 - 2542
  • [42] Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms
    Yousri, D. A.
    AbdelAty, Amr M.
    Said, Lobna A.
    Elwakil, A. S.
    Maundy, Brent
    Radwan, Ahmed G.
    NONLINEAR DYNAMICS, 2019, 95 (03) : 2491 - 2542
  • [43] Rational approximation for fractional-order system by particle swarm optimization
    Zhe Gao
    Xiaozhong Liao
    Nonlinear Dynamics, 2012, 67 : 1387 - 1395
  • [44] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [45] Reply to: Comments on “Particle Swarm Optimization with Fractional-Order Velocity”
    J. A. Tenreiro Machado
    E. J. Solteiro Pires
    Micael S. Couceiro
    Nonlinear Dynamics, 2014, 77 : 435 - 436
  • [46] Reply to: Comments on "Particle Swarm Optimization with Fractional-Order Velocity"
    Tenreiro Machado, J. A.
    Solteiro Pires, E. J.
    Couceiro, Micael S.
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 435 - 436
  • [47] Rational approximation for fractional-order system by particle swarm optimization
    Gao, Zhe
    Liao, Xiaozhong
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1387 - 1395
  • [48] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [49] ESTIMATION OF STATES AND PARAMETERS IN CHAOTIC SYSTEMS USING PARTICLE SWARM OPTIMIZATION
    Samanta, B.
    Nataraj, C.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A AND B, 2010, : 651 - 659
  • [50] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242