Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

被引:59
作者
Huang, Yu [1 ,3 ]
Guo, Feng [2 ]
Li, Yongling [1 ]
Liu, Yufeng [3 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Engn, Dept Cognit Sci, Xiamen, Peoples R China
[3] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
IDENTIFICATION; ATTRACTORS; DYNAMICS;
D O I
10.1371/journal.pone.0114910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter estimation for fractional-order chaotic systems is an important issue in fractionalorder chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A practical synchronization approach for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Peng
    [J]. NONLINEAR DYNAMICS, 2017, 89 (03) : 1719 - 1726
  • [42] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Zhang, Xi
    Wu, Ran-chao
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 527 - 538
  • [43] Active Realization of Fractional-Order Integrators and Their Application in Multiscroll Chaotic Systems
    Munoz-Pacheco, Jesus M.
    Lujano-Hernandez, Luis Carlos
    Muniz-Montero, Carlos
    Akgul, Akif
    Sanchez-Gaspariano, Luis A.
    Li, Chun-Biao
    Cagri Kutlu, Mustafa
    [J]. COMPLEXITY, 2021, 2021
  • [44] Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems
    Li, Ruihong
    Chen, Weisheng
    [J]. NONLINEAR DYNAMICS, 2014, 76 (01) : 785 - 795
  • [45] An approach to design controllers for MIMO fractional-order plants based on parameter optimization algorithm
    Xue, Dingyu
    Li, Tingxue
    [J]. ISA TRANSACTIONS, 2018, 82 : 145 - 152
  • [46] Parameter Estimation of Fuel Cell Using Chaotic Mayflies Optimization Algorithm
    Gupta, Jyoti
    Nijhawan, Parag
    Ganguli, Souvik
    [J]. ADVANCED THEORY AND SIMULATIONS, 2021, 4 (12)
  • [47] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    [J]. OPTIK, 2015, 126 (21): : 2965 - 2973
  • [48] Parameter estimation of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time
    Allafi, Walid
    Zajic, Ivan
    Uddin, Kotub
    Burnham, Keith J.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (15) : 2591 - 2598
  • [49] Effect of random parameter switching on commensurate fractional order chaotic systems
    Das, Saptarshi
    Pan, Indranil
    Das, Shantanu
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 91 : 157 - 173
  • [50] Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems
    Mousavi, Yashar
    Alfi, Alireza
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 114 : 202 - 215