Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

被引:59
作者
Huang, Yu [1 ,3 ]
Guo, Feng [2 ]
Li, Yongling [1 ]
Liu, Yufeng [3 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Engn, Dept Cognit Sci, Xiamen, Peoples R China
[3] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
IDENTIFICATION; ATTRACTORS; DYNAMICS;
D O I
10.1371/journal.pone.0114910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter estimation for fractional-order chaotic systems is an important issue in fractionalorder chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Parameter Estimation of Fractional-Order Chaotic Power System Based on Lens Imaging Learning Strategy State Transition Algorithm
    Ai, Chunyu
    He, Shan
    Fan, Xiaochao
    IEEE ACCESS, 2023, 11 : 13724 - 13737
  • [32] Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems
    Ahmadi, Mohamadreza
    Mojallali, Hamed
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1108 - 1120
  • [33] Combining differential evolution and particle swarm optimization to tune and realize fractional-order controllers
    Maione, Guido
    Punzi, Antonio
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2013, 19 (03) : 277 - 299
  • [34] Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Sistani, Mohammad-Bagher Naghibi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1105 - 1111
  • [35] Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems
    Jakowluk, Wiktor
    ADVANCES IN NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2020, 559 : 128 - 141
  • [36] Adaptive synchronization of a class of fractional-order chaotic systems
    Ma Tie-Dong
    Jiang Wei-Bo
    Fu Jie
    Chai Yi
    Chen Li-Ping
    Xue Fang-Zheng
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [37] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [38] Prescribed performance synchronization for fractional-order chaotic systems
    Liu Heng
    Li Sheng-Gang
    Sun Ye-Guo
    Wang Hong-Xing
    CHINESE PHYSICS B, 2015, 24 (09)
  • [39] Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
    Lazzus, Juan A.
    Rivera, Marco
    Lopez-Caraballo, Carlos H.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1164 - 1171
  • [40] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +