Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

被引:59
|
作者
Huang, Yu [1 ,3 ]
Guo, Feng [2 ]
Li, Yongling [1 ]
Liu, Yufeng [3 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Engn, Dept Cognit Sci, Xiamen, Peoples R China
[3] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
IDENTIFICATION; ATTRACTORS; DYNAMICS;
D O I
10.1371/journal.pone.0114910
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter estimation for fractional-order chaotic systems is an important issue in fractionalorder chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Particle Swarm Optimization Algorithm-based Identification of Fractional-order Magnetic Levitation Systems
    Liu, Tianxin
    Yang, Qing
    Tan, Yiqiu
    Li, Jie
    Chen, Qiang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1287 - 1291
  • [22] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [23] Parameter identification in chaotic systems by means of quantum particle swarm optimization
    Zhang Hong-Li
    Song Li-Li
    ACTA PHYSICA SINICA, 2013, 62 (19)
  • [24] Fractional-Order Particle Swarm Optimization with Swarm Activity Feedback
    Su, Shoubao
    Chen, Qiuxin
    Zhai, Zhaorui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 124 : 99 - 100
  • [25] Parameter estimation of fractional-order system with improved Archimedes optimization algorithm
    Chen, Yinbin
    Yang, Renhuan
    Yang, Xiuzeng
    Yang, Renyu
    Huang, Qidong
    Chen, Guilian
    Zhang, Ling
    Wei, Mengyu
    Zhou, Yongqiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025, 36 (03):
  • [26] Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm
    Lin, Jian
    Wang, Zhou-Jing
    NONLINEAR DYNAMICS, 2017, 90 (02) : 1243 - 1255
  • [27] Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm
    Jian Lin
    Zhou-Jing Wang
    Nonlinear Dynamics, 2017, 90 : 1243 - 1255
  • [28] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [29] Comment on "Particle swarm optimization with fractional-order velocity"
    Zhou, Ling-Yun
    Zhou, Shang-Bo
    Siddique, Muhammad Abubakar
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 431 - 433
  • [30] Comments on “Particle swarm optimization with fractional-order velocity”
    Xiangyin Zhang
    Haibin Duan
    Nonlinear Dynamics, 2014, 77 : 427 - 429