Toolbox for Discovering Dynamic System Relations via TAG Guided Genetic Programming

被引:1
作者
Nechita, Stefan-Cristian [1 ]
Toth, Roland [1 ,2 ]
Khandelwal, Dhruv [1 ]
Schoukens, Maarten [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[2] Inst Comp Sci & Control, Syst & Control Lab, Kende U 13-17, H-1111 Budapest, Hungary
关键词
Nonlinear system identification; Equation discovery; Tree Adjoining Grammar; Genetic Programming; Data-driven system modeling;
D O I
10.1016/j.ifacol.2021.08.389
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data-driven modeling of nonlinear dynamical systems often requires an expert user to take critical decisions a priori to the identification procedure. Recently, an automated strategy for data driven modeling of single-input single-output (SISO) nonlinear dynamical systems based on genetic programming (GP) and tree adjoining grammars (TAG) was introduced. The current paper extends these latest findings by proposing a multi-input multi-output (MIMO) TAG modeling framework for polynomial NARMAX models. Moreover, we introduce a TAG identification toolbox in Matlab that provides implementation of the proposed methodology to solve multi-input multi-output identification problems under NARMAX noise assumption. The capabilities of the toolbox and the modeling methodology are demonstrated in the identification of two SISO and one MIMO nonlinear dynamical benchmark models. Copyright (C) 2021 The Authors.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 20 条
[1]  
Ayala H.V., 2014, IEEE S COMP INT CONT
[2]   Automatic Modeling with Local Model Networks for Benchmark Processes [J].
Belz, Julian ;
Muenker, Tobias ;
Heinz, Tim O. ;
Kampmann, Geritt ;
Nelles, Oliver .
IFAC PAPERSONLINE, 2017, 50 (01) :470-475
[3]  
Billings SA, 2013, NONLINEAR SYSTEM IDENTIFICATION: NARMAX METHODS IN THE TIME, FREQUENCY, AND SPATIO-TEMPORAL DOMAINS, P1, DOI 10.1002/9781118535561
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]   A tutorial on multiobjective optimization: fundamentals and evolutionary methods [J].
Emmerich, Michael T. M. ;
Deutz, Andre H. .
NATURAL COMPUTING, 2018, 17 (03) :585-609
[6]   Polynomial State-Space Model Decoupling for the Identification of Hysteretic Systems [J].
Esfahani, Alireza Fakhrizadeh ;
Dreesen, Philippe ;
Tiels, Koen ;
Noel, Jean-Philippe ;
Schoukens, Johan .
IFAC PAPERSONLINE, 2017, 50 (01) :458-463
[7]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[8]   Completely derandomized self-adaptation in evolution strategies [J].
Hansen, N ;
Ostermeier, A .
EVOLUTIONARY COMPUTATION, 2001, 9 (02) :159-195
[9]  
Hoai NX, 2003, LECT NOTES COMPUT SC, V2610, P335
[10]  
Kallmeyer Laura, 2009, RES LANGUAGE COMPUTA, V7, P55