Contact lines on soft solids with uniform surface tension: analytical solutions and double transition for increasing deformability

被引:49
作者
Dervaux, Julien [1 ,2 ,3 ]
Limat, Laurent [1 ,2 ]
机构
[1] CNRS, Lab MSC, UMR 7057, F-75013 Paris, France
[2] Univ Paris Diderot, F-75013 Paris, France
[3] CNRS, LIED, UMR 8236, F-75013 Paris, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2176期
关键词
contact line; wetting; Flamant-Cerruti; LIQUID LENSES; DEFORMATION; ANGLES;
D O I
10.1098/rspa.2014.0813
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using an exact Green function method, we calculate analytically the substrate deformations near straight contact lines on a soft, linearly elastic incompressible solid, having a uniform surface tension gamma(s). This generalized Flamant-Cerruti problem of a single contact line is regularized by introducing a finite width 2a for the contact line. We then explore the dependence of the substrate deformations upon the softness ratio l(s)/a, where l(s)=gamma(s)/(2 mu) is the elastocapillary length built upon gamma(s) and on the elastic shear modulus mu. We discuss the force transmission problem from the liquid surface tension to the bulk and surface of the solid and show that the Neuman condition of surface tension balance at the contact line is only satisfied in the asymptotic limit a/l(s) -> 0, the Young condition holding in the opposite limit. We then address the problem of two parallel contact lines separated from a distance 2R, and we recover analytically the 'double transition' upon the ratios l(s)/a and R/l(s) identified recently by Lubbers et al. (2014 J. Fluid Mech. 747, R1. (doi:10.1017/jfm.2014.152)), when one increases the substrate deformability. We also establish a simple analytic law ruling the contact angle selection upon R/l(s) in the limit a/l(s) << 1, that is the most common situation encountered in problems of wetting on soft materials.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Elastocapillary deformations on partially-wetting substrates: rival contact-line models [J].
Bostwick, Joshua B. ;
Shearer, Michael ;
Daniels, Karen E. .
SOFT MATTER, 2014, 10 (37) :7361-7369
[2]  
Butt H.-J., Physics and Chemistry of Interfaces, V2nd
[3]   Viscoelastic effects in the spreading of liquids [J].
Carre, A ;
Gastel, JC ;
Shanahan, MER .
NATURE, 1996, 379 (6564) :432-434
[4]  
Cerruti V., 1882, ATTI ACCAD NAZ LIN, V13, P81
[5]   Instabilities in droplets spreading on gels [J].
Daniels, Karen E. ;
Mukhopadhyay, Shomeek ;
Houseworth, Paul J. ;
Behringer, Robert P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (12)
[6]   Investigation of the Neumann triangle for dodecane liquid lenses on water [J].
David, Robert ;
Dobson, Stephanie M. ;
Tavassoli, Zahra ;
Cabezas, M. Guadalupe ;
Neumann, A. Wilhelm .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 333 (1-3) :12-18
[7]   Contact angles and hysteresis on soft surfaces [J].
Extrand, CW ;
Kumagai, Y .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 184 (01) :191-200
[8]  
Flamant A., 1892, CR Acad. Sci., V114, P1465
[9]   INDENTATION OF A MEMBRANE ON AN ELASTIC HALF SPACE [J].
HAJJI, MA .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1978, 45 (02) :320-324
[10]   Deformation near a liquid contact line on an elastic substrate [J].
Hui, Chung-Yuen ;
Jagota, Anand .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2167)