On the Range of a Vector Measure

被引:0
作者
de Kock, Mienie [1 ]
Puglisi, Daniele [2 ]
机构
[1] Texas A&M Univ Cent Texas, Dept Math, Killeen, TX 76549 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
来源
VECTOR MEASURES, INTEGRATION AND RELATED TOPICS | 2010年 / 201卷
关键词
Range of a vector measure; BANACH SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a countable subset of c(0) that lies in the range of a (c(0))**-valued measure, then C lies in the range of a c(0)-valued measure. We extend this result to C(K), where K is a compact Hausdorff space, i.e., we let C be a countable subset of C(K) that lies in the range of a C(K)**-valued measure, then C lies in the range of a C(K)-valued measure. We will also see that in any separable Banach space the result still holds.
引用
收藏
页码:285 / +
页数:2
相关论文
共 10 条
[1]   STUCTURE OF WEAKLY COMPACT SETS IN BANACH SPACES [J].
AMIR, D ;
LINDENST.J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :35-&
[2]  
Diestel J., 1977, MATH SURVEYS MONOGRA, V15
[3]  
Fremlin D.H., 1984, CAMBRIDGE TRACTS MAT, V84
[4]   SOME REMARKS ON THE AVERAGE RANGE OF A VECTOR MEASURE [J].
FRENICHE, FJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (01) :119-124
[5]  
Grothendieck A., 1952, Amer. J. Math., V74, P168, DOI 10.2307/2372076
[6]   A note on sequences lying in the range of a vector measure valued in the bidual [J].
Marchena, B ;
Pineiro, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) :3013-3017
[7]  
MILJUTIN A.A., 1996, TEOR FUNK FUNKCIONAL, V2, P150
[8]  
PELCZYNSKI A, 1968, STUD MATH, V31, P513
[9]  
Sobczyk A., 1941, Bull. Am. Math. Soc., V47, P938
[10]  
Sofi M. A., 2007, EXTRACTA MATH, V22, P257