MF2-Net: A multipath feature fusion network for medical image segmentation

被引:25
作者
Yamanakkanavar, Nagaraj [1 ]
Lee, Bumshik [1 ]
机构
[1] Chosun Univ, Dept Informat & Commun Engn, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Convolutional neural network; Medical image segmentation; Feature fusion; Skin lesion segmentation; Tooth segmentation; Brain segmentation; SKIN-LESION SEGMENTATION; CLASSIFICATION;
D O I
10.1016/j.engappai.2022.105004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a multipath feature fusion convolutional neural network (MF2-Net) with noveland efficient spatial group convolution (SGC) modules with a multipath feature fusion network for theautomated segmentation of medical images. The proposed MF2-Net was designed with multiple encoder pathsto extract layer-specific multiscale information. Each encoder path employs SGC modules composed of stackedasymmetric kernels of different sizes (kx1 and 1xk). In the SGC modules, the context details of high-levelfeatures are encoded at varying scales, and neighbor feature information is incorporated with higher precision.In addition, the encoded features fused at the bottleneck layer capture abundant semantic features frominput images. Furthermore, the guided block mechanism is used to refine the segmentation boundaries at thedecoder stage by integrating the skip connection from the encoder stage. We verified that the SGC modulesin a multipath feature fusion network improve the segmentation accuracy with fewer learnable parameters.Experimental results demonstrated that the proposed model outperformed existing medical image segmentationmethods by an average score of 0.97 on publicly available datasets
引用
收藏
页数:12
相关论文
共 60 条
[1]   Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks [J].
Al-Masni, Mohammed A. ;
Al-antari, Mugahed A. ;
Choi, Mun-Taek ;
Han, Seung-Moo ;
Kim, Tae-Seong .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 :221-231
[2]   A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation [J].
Alsmadi, Mutasem K. .
AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) :697-706
[3]   An Efficient Segmentation Algorithm for Panoramic Dental Images [J].
Amer, Yusra Y. ;
Aqel, Musbah J. .
INTERNATIONAL CONFERENCE ON COMMUNICATIONS, MANAGEMENT, AND INFORMATION TECHNOLOGY (ICCMIT'2015), 2015, 65 :718-725
[4]  
[Anonymous], 2019, ECCV, DOI DOI 10.1007/S13143-018-0064-5
[5]  
[Anonymous], 2020, SELF GROUPING CONVOL, DOI DOI 10.1016/J.NEUNET.2020.09.015
[6]  
[Anonymous], 2016, NIPS, DOI [DOI 10.1145/3065386, DOI 10.2165/00129785-200404040-00005]
[7]  
[Anonymous], 2017, P IPMI, DOI DOI 10.1007/978-3-319-59050-9_28
[8]   Improving Dermoscopy Image Classification Using Color Constancy [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) :1146-1152
[9]   Quantitative Analysis of Patch-Based Fully Convolutional Neural Networks for Tissue Segmentation on Brain Magnetic Resonance Imaging [J].
Bernal, Jose ;
Kushibar, Kaisar ;
Cabezas, Mariano ;
Valverde, Sergi ;
Oliver, Arnau ;
Llado, Xavier .
IEEE ACCESS, 2019, 7 :89986-90002
[10]   Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks [J].
Bi, Lei ;
Kim, Jinman ;
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2065-2074