Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion

被引:16
作者
Chen, Ting-Gang [1 ,2 ]
Yu, Peichen [1 ,2 ]
Chou, Rone-Hwa [3 ]
Pan, Ci-Ling [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu, Taiwan
[3] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan
来源
OPTICS EXPRESS | 2010年 / 18卷 / 19期
关键词
HEAT-CONDUCTION; TRANSPORT; ARRAYS;
D O I
10.1364/OE.18.00A467
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vertically-aligned silicon nanowires (SiNWs) that demonstrate reductions of phonon thermal conductivities are ideal components for thermoelectric devices. In this paper, we present large-area silicon nanowire arrays in various lengths using a silver-induced, electroless-etching method that is applicable to both n- and p-type substrates. The measured thermal conductivities of nanowire composites are significantly reduced by up to 43%, compared to that of bulk silicon. Detailed calculations based on the series thermal resistance and phonon radiative transfer models confirm the reduction of thermal conductivity not only due to the increased air fraction, but also the nanowire size effect, suggesting the soundness of employing bulk silicon nanowire composites as efficient thermoelectric materials. (C) 2010 Optical Society of America
引用
收藏
页码:A467 / A476
页数:10
相关论文
共 27 条
  • [1] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [2] THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD
    CAHILL, DG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) : 802 - 808
  • [3] Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
    Chen, G
    [J]. PHYSICAL REVIEW B, 1998, 57 (23): : 14958 - 14973
  • [4] Thermal conductivity and heat transfer in superlattices
    Chen, G
    Neagu, M
    [J]. APPLIED PHYSICS LETTERS, 1997, 71 (19) : 2761 - 2763
  • [5] Chen G, 2001, SEMICONDUCT SEMIMET, V71, P203
  • [6] Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region
    Chen, Hung-Ying
    Lin, Hon-Way
    Wu, Chen-Ying
    Chen, Wei-Chun
    Chen, Jyh-Shin
    Gwo, Shangjr
    [J]. OPTICS EXPRESS, 2008, 16 (11): : 8106 - 8116
  • [7] Thermoelectric cooling and power generation
    DiSalvo, FJ
    [J]. SCIENCE, 1999, 285 (5428) : 703 - 706
  • [8] Thermomechanical and viscoelastic behavior of a no-flow underfill material for flip-chip applications
    He, Y
    [J]. THERMOCHIMICA ACTA, 2005, 439 (1-2) : 127 - 134
  • [9] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [10] Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures
    Huang, Yi-Fan
    Chattopadhyay, Surojit
    Jen, Yi-Jun
    Peng, Cheng-Yu
    Liu, Tze-An
    Hsu, Yu-Kuei
    Pan, Ci-Ling
    Lo, Hung-Chun
    Hsu, Chih-Hsun
    Chang, Yuan-Huei
    Lee, Chih-Shan
    Chen, Kuei-Hsien
    Chen, Li-Chyong
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (12) : 770 - 774