Stimulating biogas production from steam-exploded birch wood using Fenton reaction and fungal pretreatment

被引:5
作者
Hashemi, Seyedbehnam [1 ]
Solli, Linn [2 ]
Aasen, Roald [2 ]
Lamb, Jacob J. [1 ]
Horn, Svein Jarle [2 ,3 ]
Lien, Kristian M. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, Kolbj Orn Hejes Vei 1B, N-7034 Trondheim, Norway
[2] Norwegian Inst Bioecon Res, NIBIO, Frederik A Dahls Vei 20, N-1432 As, Norway
[3] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci, POB 5003, N-1432 As, Norway
关键词
Anaerobic digestion; Fenton reaction; Enzymatic pretreatment; White -rot fungi; Lignocellulose; ANAEROBIC-DIGESTION; ROT FUNGI; DEGRADATION; CHEMISTRY; OXIDATION; ENZYMES; LIGNIN; GROWTH; WASTE;
D O I
10.1016/j.biortech.2022.128190
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Delignification of steam-exploded birch wood (SEBW) was stimulated using a pretreatment method including Fenton reaction (FR) and fungi. SEBW was employed as a substrate to optimize the Fe(III) and Fe(II) dosage in FR. Maximum iron-binding to SEBW was obtained at pH 3.5. FR pretreatment increased biological methane yields from 257 mL/g vS in control to 383 and 352 mL/ g vS in samples with 0.5 mM Fe(II) and 1.0 mM Fe(III), respectively. Further enzymatic pretreatment using a commercial cellulase cocktail clearly improved methane production rate but only increased the final methane yields by 2-9 %. Finally, pretreatments with the fungi Pleurotus ostreatus (PO) and Lentinula edodes (LE), alone or in combination with FR, were carried out. SEBW pretreated with only LE and samples pretreated with PO and1 mM Fe(III) + H2O2 increased the methane production yield to 420 and 419 mL/g vS respectively. These pretreatments delignified SEBW up to 25 %.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes [J].
Almomani, F. ;
Bhosale, R. R. ;
Khraisheh, M. A. M. ;
Shawaqfah, M. .
FUEL, 2019, 253 :964-974
[2]   Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network [J].
Almomani, Fares .
FUEL, 2020, 280
[3]   Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation [J].
Andlar, Martina ;
Rezic, Tonci ;
Mardetko, Nenad ;
Kracher, Daniel ;
Ludwig, Roland ;
Santek, Bozidar .
ENGINEERING IN LIFE SCIENCES, 2018, 18 (11) :768-778
[4]  
APHA, 2007, Standard Methods for the Examination of Water and Wastewater, V22nd, DOI DOI 10.2105/AJPH.51.6.940-A
[5]   Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions [J].
Arantes, Valdeir ;
Milagres, Adriane M. F. ;
Filley, Timothy R. ;
Goodell, Barry .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (04) :541-555
[6]   Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: Implications for brown-rot decay [J].
Arantes, Valdeir ;
Qian, Yuhui ;
Milagres, Adriane M. F. ;
Jellison, Jody ;
Goodell, Barry .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2009, 63 (04) :478-483
[7]   Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp nov. [J].
Billings, Andrew F. ;
Fortney, Julian L. ;
Hazen, Terry C. ;
Simmons, Blake ;
Davenport, Karen W. ;
Goodwin, Lynne ;
Ivanova, Natalia ;
Kyrpides, Nikos C. ;
Mavromatis, Konstantinos ;
Woyke, Tanja ;
DeAngelis, Kristen M. .
STANDARDS IN GENOMIC SCIENCES, 2015, 10
[8]   The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials [J].
Costa, Thales H. F. ;
Eijsink, Vincent G. H. ;
Horn, Svein Jarle .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
[9]   Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus [J].
Daou, Marianne ;
Piumi, Francois ;
Cullen, Daniel ;
Record, Eric ;
Faulds, Craig B. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (16) :4867-4875
[10]  
Dashtban Mehdi, 2010, Int J Biochem Mol Biol, V1, P36