An efficient computational method for a class of singularly perturbed delay parabolic partial differential equation

被引:9
作者
Wang, Yulan [1 ]
机构
[1] Inner Mongolia Univ Technol, Dept Math, Hohhot 010051, Peoples R China
关键词
singular perturbation; reproducing kernel; delay partial differential equations; BOUNDARY-VALUE-PROBLEMS; REPRODUCING KERNEL;
D O I
10.1080/00207160.2011.600450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new technique is constructed skillfully in order to solve a class of singularly perturbed delay parabolic partial differential equation. The outer and inner exact solutions of the linear problem can be expressed in the form of series and the outer and inner approximate solutions of the nonlinear problem are given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of the exact solution is obtained by using a new technique in a new reproducing kernel Hilbert space and the accuracy of numerical computation is higher. Two numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method indicate that it is simple and effective.
引用
收藏
页码:3496 / 3506
页数:11
相关论文
共 16 条
[1]   A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations [J].
Ansari, A. R. ;
Bakr, S. A. ;
Shishkin, G. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :552-566
[2]   A note on iterative methods for solving singularly perturbed problems using non-monotone methods on Shishkin meshes [J].
Ansari, AR ;
Hegarty, AF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (33-34) :3673-3687
[3]   Numerical solution of a convection diffusion problem with Robin boundary conditions [J].
Ansari, AR ;
Hegarty, AF .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 156 (01) :221-238
[4]   A note on fitted operator methods for a laminar jet problem [J].
Ansari, AR ;
Hegarty, AF ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 2003, 45 (04) :353-365
[5]   The exact solution of system of linear operator equations in reproducing kernel spaces [J].
Chen, Zhong ;
Chen, Zhi-jie .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) :56-61
[6]   An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) :263-280
[7]  
Farrell P., 2000, Robust Computational Techniques for Boundary Layers
[8]   Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods [J].
Geng, Fazhan ;
Cui, Minggen ;
Zhang, Bo .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :637-644
[9]  
Hemker P.W., 2003, Computational Methods in Appl. Math, V3, P387
[10]   Anti-periodic solutions for Rayleigh-type equations via the reproducing kernel Hilbert space method [J].
Jiang, Wei ;
Cui, Minggen ;
Lin, Yingzhen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1754-1758