WX2(X = S, Se) Single Crystals: A Highly Stable Material for Supercapacitor Applications

被引:47
作者
Habib, Muhammad [1 ]
Khalil, Adnan [1 ]
Muhammad, Zahir [1 ]
Khan, Rashid [1 ]
Wang, Changda [1 ]
Rehman, Zia Ur [1 ]
Masood, Hafiz Tariq [2 ]
Xu, Weiyu [1 ]
Liu, Hengjie [1 ]
Gan, Wei [1 ]
Wu, Chuanqiang [1 ]
Chen, Haiping [1 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
关键词
Tungsten disulfide; Tungsten diselenide; Chemical vapor transport; Electrochemistry; Supercapacitors; TRANSITION-METAL DICHALCOGENIDES; HIGH-PERFORMANCE SUPERCAPACITORS; COBALT SULFIDE NANOTUBES; FLEXIBLE ELECTRODES; TRANSPORT REACTIONS; MOS2; GRAPHENE; WS2; CONVERSION; NANOSHEETS;
D O I
10.1016/j.electacta.2017.10.083
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We present high quality WX2 (X = S, Se) single crystals synthesized via an improved chemical vapor transport technique. Morphological and structural characteristics of the as-grown layered single crystals were analyzed using SEM, TEM, XPS, Raman spectroscopy, XRD and UV visible spectroscopy characterization techniques. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge analysis reveal the insights for WX2 single crystals to be used an as excellent material for electrochemical supercapacitors. Notably the obtained supercapacitor electrodes show excellent cycle stability and high capacitance retention of 80 and 99% for WS2 and WSe2 respectively after 20,000 cycles, suggesting their high potential in electrochemical energy storage applications. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 47 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[3]   Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes [J].
Bhandavat, R. ;
David, L. ;
Singh, G. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (11) :1523-1530
[4]   Chemical Vapor Transport Reactions - A Historical Review [J].
Binnewies, Michael ;
Glaum, Robert ;
Schmidt, Marcus ;
Schmidt, Peer .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2013, 639 (02) :219-229
[5]   Comparison of Two-Dimensional Transition Metal Dichalcogenides for Electrochemical Supercapacitors [J].
Bissett, Mark A. ;
Worrall, Stephen D. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
ELECTROCHIMICA ACTA, 2016, 201 :30-37
[6]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[7]   Microwave and hydrothermal syntheses of WSe2 micro/nanorods and their application in supercapacitors [J].
Chakravarty, Disha ;
Late, Dattatray J. .
RSC ADVANCES, 2015, 5 (28) :21700-21709
[8]   Comparative study on MoS2 and WS2 for electrocatalytic water splitting [J].
Chen, Tzu-Yin ;
Chang, Yung-Huang ;
Hsu, Chang-Lung ;
Wei, Kung-Hwa ;
Chiang, Chia-Ying ;
Li, Lain-Jong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (28) :12302-12309
[9]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[10]   Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications [J].
Chu, Chun-Yu ;
Tsai, Jin-Ting ;
Sun, Chia-Liang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (18) :13880-13886