Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties

被引:42
作者
Fang, Caihong [1 ]
Zhao, Guili [1 ]
Xiao, Yanling [1 ]
Zhao, Jun [1 ]
Zhang, Zijun [1 ]
Geng, Baoyou [1 ]
机构
[1] Anhui Normal Univ, Minist Educ, Coll Chem & Mat Sci, Key Lab Funct Mol Solids,Anhui Lab Mol Based Mat, Wuhu 241000, Anhui, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会;
关键词
PLASMON RESONANCE; NANORODS; NANOPARTICLES; NANOCRYSTALS; BIPYRAMIDS; MECHANISM;
D O I
10.1038/srep36706
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H2PtCl6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects
    Chateau, D.
    Liotta, A.
    Vadcard, F.
    Navarro, J. R. G.
    Chaput, F.
    Lerme, J.
    Lerouge, F.
    Parola, S.
    [J]. NANOSCALE, 2015, 7 (05) : 1934 - 1943
  • [2] Shape- and size-dependent refractive index sensitivity of gold nanoparticles
    Chen, Huanjun
    Kou, Xiaoshan
    Yang, Zhi
    Ni, Weihai
    Wang, Jianfang
    [J]. LANGMUIR, 2008, 24 (10) : 5233 - 5237
  • [3] Gold nanorods and their plasmonic properties
    Chen, Huanjun
    Shao, Lei
    Li, Qian
    Wang, Jianfang
    [J]. CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) : 2679 - 2724
  • [4] Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes
    Fan, Feng-Ru
    Liu, De-Yu
    Wu, Yuan-Fei
    Duan, Sai
    Xie, Zhao-Xiong
    Jiang, Zhi-Yuan
    Tian, Zhong-Qun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (22) : 6949 - +
  • [5] (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species
    Fang, Caihong
    Jia, Henglei
    Chang, Shuai
    Ruan, Qifeng
    Wang, Peng
    Chen, Tao
    Wang, Jianfang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) : 3431 - 3438
  • [6] Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters
    Giannini, Vincenzo
    Fernandez-Dominguez, Antonio I.
    Heck, Susannah C.
    Maier, Stefan A.
    [J]. CHEMICAL REVIEWS, 2011, 111 (06) : 3888 - 3912
  • [7] Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications
    Huang, Xiaohuo
    Neretina, Svetiana
    El-Sayed, Mostafa A.
    [J]. ADVANCED MATERIALS, 2009, 21 (48) : 4880 - 4910
  • [8] Jana NR, 2001, ADV MATER, V13, P1389, DOI 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO
  • [9] 2-F
  • [10] Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties
    Jia, Henglei
    Fang, Caihong
    Zhu, Xiao-Ming
    Ruan, Qifeng
    Wang, Yi-Xiang J.
    Wang, Jianfang
    [J]. LANGMUIR, 2015, 31 (26) : 7418 - 7426