Duality relation for the Hilbert series of almost symmetric numerical semigroups

被引:3
作者
Fel, Leonid G. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Civil Engn, IL-32000 Haifa, Israel
关键词
RINGS; GENERATORS;
D O I
10.1007/s11856-011-0117-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the duality relation for the Hilbert series H (d (m) ; z) of the almost symmetric numerical semigroup S (d (m) ) combining it with its dual H (d (m) ; z (-1)). We establish the bijection between the multiset of degrees of the syzygy terms and the multiset of the gaps F (j) , generators d (i) and their linear combinations. We present the relations for the sums of the Betti numbers of even and odd indices separately. We apply the duality relation to the simple case of the almost symmetric semigroups of maximal embedding dimension, and give the necessary and sufficient conditions for the minimal set d (m) to generate such semigroups.
引用
收藏
页码:413 / 444
页数:32
相关论文
共 13 条
[1]   Gaps in nonsymmetric numerical semigroups [J].
Aicardi, Francesca ;
Fel, Leonid G. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) :85-112
[2]   One-dimensional almost Gorenstein rings [J].
Barucci, V ;
Froberg, R .
JOURNAL OF ALGEBRA, 1997, 188 (02) :418-442
[3]  
Eisenbud David, 2005, GRADUATE TEXTS MATH
[4]  
Fel L.G., 2006, Funct. Anal. Other Math, V1, P119, DOI [10.1007/s11853-007-0, 10.1007/s11853-007-0009-5, DOI 10.1007/S11853-007-0009-5]
[5]  
GESSEL IM, 1995, HDB COMBINATORICS, V2, P1036
[6]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&
[7]  
Herzog J., 1971, WERTHALBGRUPPE LOKAL, V1
[8]  
Hickman J. L., 1980, Bulletin of the Australian Mathematical Society, V22, P211, DOI 10.1017/S000497270000650X
[9]   LENGTH CALCULATION AND CANONIC IDEALS IN UNIDIMENSIONAL RINGS [J].
JAGER, J .
ARCHIV DER MATHEMATIK, 1977, 29 (05) :504-512
[10]   Pseudo-symmetric numerical semigroups with three generators [J].
Rosales, JC ;
García-Sánchez, PA .
JOURNAL OF ALGEBRA, 2005, 291 (01) :46-54