Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

被引:210
作者
Frankenberg, Christian [1 ,2 ]
Thorpe, Andrew K. [2 ]
Thompson, David R. [2 ]
Hulley, Glynn [2 ]
Kort, Eric Adam [3 ]
Vance, Nick [2 ]
Borchardt, Jakob [4 ]
Krings, Thomas [4 ]
Gerilowski, Konstantin [4 ]
Sweeney, Colm [5 ,6 ]
Conley, Stephen [7 ,8 ]
Bue, Brian D. [2 ]
Aubrey, Andrew D. [2 ]
Hook, Simon [2 ]
Green, Robert O. [2 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany
[5] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[6] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA
[7] Sci Aviat, Boulder, CO 80301 USA
[8] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
美国海洋和大气管理局;
关键词
methane; Four Corners; remote sensing; heavy-tail; IMAGING SPECTROMETER AVIRIS; MATCHED-FILTER DETECTION; GAS PRODUCTION SITES; EMISSION RATES; UNITED-STATES; TRACE GASES; RETRIEVAL; QUANTIFICATION; SPECTROSCOPY; CO2;
D O I
10.1073/pnas.1605617113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1-to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit similar to 2 kg/h to 5 kg/h through similar to 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12): 6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.
引用
收藏
页码:9734 / 9739
页数:6
相关论文
共 23 条
[1]   Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings [J].
Allen, David T. ;
Sullivan, David W. ;
Zavala-Araiza, Daniel ;
Pacsi, Adam P. ;
Harrison, Matthew ;
Keen, Kindal ;
Fraser, Matthew P. ;
Hill, A. Daniel ;
Lamb, Brian K. ;
Sawyer, Robert F. ;
Seinfeld, John H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (01) :641-648
[2]  
Allen DT, 2013, P NATL ACAD SCI USA, V110, P17768, DOI 10.1073/pnas.1304880110
[3]   Methane Leaks from North American Natural Gas Systems [J].
Brandt, A. R. ;
Heath, G. A. ;
Kort, E. A. ;
O'Sullivan, F. ;
Petron, G. ;
Jordaan, S. M. ;
Tans, P. ;
Wilcox, J. ;
Gopstein, A. M. ;
Arent, D. ;
Wofsy, S. ;
Brown, N. J. ;
Bradley, R. ;
Stucky, G. D. ;
Eardley, D. ;
Harriss, R. .
SCIENCE, 2014, 343 (6172) :733-735
[4]   Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA [J].
Conley, S. ;
Franco, G. ;
Faloona, I. ;
Blake, D. R. ;
Peischl, J. ;
Ryerson, T. B. .
SCIENCE, 2016, 351 (6279) :1317-1320
[5]   Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases:: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT [J].
Frankenberg, C ;
Platt, U ;
Wagner, T .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :9-22
[6]   Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability [J].
Frankenberg, C. ;
Aben, I. ;
Bergamaschi, P. ;
Dlugokencky, E. J. ;
van Hees, R. ;
Houweling, S. ;
van der Meer, P. ;
Snel, R. ;
Tol, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[7]   Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery [J].
Funk, CC ;
Theiler, J ;
Roberts, DA ;
Borel, CC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1410-1420
[8]  
Gålfalk M, 2016, NAT CLIM CHANGE, V6, P426, DOI [10.1038/NCLIMATE2877, 10.1038/nclimate2877]
[9]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248
[10]   High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) [J].
Hulley, Glynn C. ;
Duren, Riley M. ;
Hopkins, Francesca M. ;
Hook, Simon J. ;
Vance, Nick ;
Guillevic, Pierre ;
Johnson, William R. ;
Eng, Bjorn T. ;
Mihaly, Jonathan M. ;
Jovanovic, Veljko M. ;
Chazanoff, Seth L. ;
Staniszewski, Zak K. ;
Kuai, Le ;
Worden, John ;
Frankenberg, Christian ;
Rivera, Gerardo ;
Aubrey, Andrew D. ;
Miller, Charles E. ;
Malakar, Nabin K. ;
Sanchez Tomas, Juan M. ;
Holmes, Kendall T. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (05) :2393-2408