Quantum key distribution via quantum encryption

被引:61
作者
Zhang, YS [1 ]
Li, CF
Guo, GC
机构
[1] Univ Sci & Technol China, Lab Quantum Commun & Quantum Computat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 02期
关键词
D O I
10.1103/PhysRevA.64.024302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[5]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[6]   Quantum key distribution without alternative measurements [J].
Cabello, A .
PHYSICAL REVIEW A, 2000, 61 (05)
[7]  
CABELLO A, QUANTPH0009051
[8]   Substituting quantum entanglement for communication [J].
Cleve, R ;
Buhrman, H .
PHYSICAL REVIEW A, 1997, 56 (02) :1201-1204
[9]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780