On fractional derivatives with generalized Mittag-Leffler kernels

被引:69
|
作者
Abdeljawad, Thabet [1 ]
Baleanu, Dumitru [2 ,3 ]
机构
[1] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Fractional derivatives with generalized Mittag-Leffler kernels; Generalized Mittag-Leffler function; Laplace transform convolution; Euler-Lagrange equation; Integration by parts;
D O I
10.1186/s13662-018-1914-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional derivatives with three parameter generalized Mittag-Leffler kernels and their properties are studied. The corresponding integral operators are obtained with the help of Laplace transforms. The action of the presented fractional integrals on the Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is analyzed. Integration by parts formulas in the sense of Riemann and Caputo are proved and then used to formulate the fractional Euler-Lagrange equations with an illustrative example. Certain nonconstant functions whose fractional derivatives are zero are determined as well.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Third-Order Differential Subordinations for Analytic Functions Associated with Generalized Mittag-Leffler Functions
    Aducanu, Dorina R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (04)
  • [42] Third-Order Differential Subordinations for Analytic Functions Associated with Generalized Mittag-Leffler Functions
    Dorina Răducanu
    Mediterranean Journal of Mathematics, 2017, 14
  • [43] On Certain Fractional Differential Equations Involving Generalized Multivariable Mittag - Leffler Function
    Jaimini, B.
    Gupta, Jyotti
    NOTE DI MATEMATICA, 2012, 32 (02): : 141 - 156
  • [44] Certain Unified Integrals Involving a Multivariate Mittag-Leffler Function
    Jain, Shilpi
    Agarwal, Ravi P.
    Agarwal, Praveen
    Singh, Prakash
    AXIOMS, 2021, 10 (02)
  • [45] The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations
    M. Kamarujjama
    N. U. Khan
    Owais Khan
    The Journal of Analysis, 2019, 27 : 1029 - 1046
  • [46] The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations
    Kamarujjama, M.
    Khan, N. U.
    Khan, Owais
    JOURNAL OF ANALYSIS, 2019, 27 (04) : 1029 - 1046
  • [47] Mittag-Leffler functions, lp n-balls and geometric pairings
    Guardiola Muzquiz, Gorka
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (03) : 195 - 211
  • [48] INTEGRAL TRANSFORMS OF THE k-GENERALIZED MITTAG-LEFFLER FUNCTION E-k,alpha,beta(gamma,tau)(z)
    Saxena, Ram K.
    Daiya, Jitendra
    Singh, Abhishek
    MATEMATICHE, 2014, 69 (02): : 7 - 16
  • [49] Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function
    Hadi, Sarem H.
    Darus, Maslina
    Park, Choonkil
    Lee, Jung Rye
    AIMS MATHEMATICS, 2022, 7 (07): : 11772 - 11783
  • [50] On the integral transform of Mittag-Leffler-type functions with applications
    Choudhary, Anupama
    Kumar, Devendra
    Singh, Jagdev
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (03): : 155 - 162